COVID-19 Response at

Read what we're doing...

Aerodynamics for Engineers


Product Description
Product Details

Table of Contents

(NOTE: Each section contains a Summary, Problems, and References)

1. Fluid Properties.
Concept of a Fluid. Fluid as a Continuum. Fluid Properties. Pressure Variation in a Static Fluid Medium. The Standard Atmosphere.

2. Fundamentals of Fluid Mechanics.
Introduction to Fluid Dynamics. Conservation of Mass. Conservation of Linear Momentum. Applications to Constant-Property Flows. Reynolds Number and Mach Number as Similarity Parameters. Concept of the Boundary Layer. Conservation of Energy. First Law of Thermodynamics. Derivation of the Energy Equation.

3. Dynamics of an Incompressible, Inviscid Flow Field.
Inviscid Flows. Bernoulli's Equation. Use of Bernoulli's Equation to Determine Airspeed. The Pressure Coefficient. Circulation. Irrotational Flow. Kelvin's Theorem. Incompressible, Irrotational Flow. Stream Function in a Two-Dimensional, Incompressible Flow. Relation Between Streamlines and Equipotential Lines. Superposition of Flows. Elementary Flows. Adding Elementary Flows to Describe Flow Around a Cylinder. Lift and Drag Coefficients as Dimensionless Flow-Field Parameters. Flow Around a Cylinder with Circulation. Source Density Distribution on the Body Surface. Incompressible, Axisymmetric Flow.

4. Viscous Boundary Layers.
Equations Governing the Boundary Layer for a Steady, Two-Dimensional, Incompressible Flow. Boundary Conditions. Incompressible, Laminar Boundary Layer. Boundary-Layer Transition. Incompressible, Turbulent Boundary Layer. Eddy Viscosity and Mixing Length Concepts. Integral Equations for a Flat-Plate Boundary Layer. Thermal Boundary Layer for Constant-Property Flows.

5. Characteristic Parameters for Airfoil and Wing Aerodynamics.
Characterization of Aerodynamic Forces and Moments. Airfoil Geometry Parameters. Wing-Geometry Parameters. Aerodynamic Force and Moment Coefficients. Wings of Finite Span.

6. Incompressible Flows around Airfoils of Infinite Span.
General Comments. Circulation and the Generation of Lift. General Thin-Airfoil Theory. Thin, Flat-Plate Airfoil (Symmetric Airfoil). Thin, Cambered Airfoil. High-Lift Airfoil Sections. Multielement Airfoil Sections for Generating High Lift. High-Lift Military Airfoils.

7. Incompressible Flows about Wings of Finite Span.
General Comments. Vortex System. Lifting-Line Theory for Unswept Wings. Panel Methods. Vortex Lattice Method. Factors Affecting Drag Due-to-Lift at Subsonic Speeds. Delta Wings. Leading-Edge Extensions. Asymmetric Loads on the Fuselage at High Angles of Attack. Flow Fields for Aircraft at High Angles of Attack.

8. Dynamics of a Compressible Flow Field.
Thermodynamic Concepts. Adiabatic Flow in a Variable-Area Streamtube. Isentropic Flow in a Variable-Area. Characteristic Equations and Prandtl-Meyer Flow. Shock Waves. Viscous Boundary Layer.

9. Compressible, Subsonic Flows and Transonic Flows.
Compressible, Subsonic Flow. Transonic Flow Past Unswept Airfoils. Swept Wings at Transonic Speeds. Forward Swept Wing. Transonic Aircraft.

10. Two-Dimensional Supersonic Flows around Thin Airfoil.
Linear Theory. Second-Order Theory (Busemann's Theory). Shock-Expansion Technique.

11. Supersonic Flows Over Wings and Airplane Configurations.
General Remarks About Lift and Drag. General Remarks About Supersonic Wings. Governing Equation and Boundary Conditions. Consequences of Linearity. Solution Methods. Conical-Flow Method. Singularity-Distribution Method. Design Considerations for Supersonic Aircraft. Some Comments About the Design of the SST and of the HSCT. Aerodynamic Interaction. Aerodynamic Analysis for Complete Configurations in a Supersonic Stream.

12. Hypersonic Flows.
Newtonian Flow Model. Stagnation Region Flow-Field Properties. Modified Newtonian Flow. High L/D Hypersonic Configurations-Waveriders. Aerodynamic Heating. A Hypersonic Cruiser for the Twenty-First Century? Importance of Interrelating CFD, Ground-Test Data, and Flight-Test Data.

13. Aerodynamic Design Considerations.
High-Lift Configurations. Circulation Control Wing. Design Considerations for Tactical Military Aircraft. Drag Reduction. Development of an Airframe Modification to Improve the Mission Effectiveness of an Existing Airplane. Considerations for Wing/Canard, Wing/Tail, and Tailless Configurations. Comments on the F-15 Design. The Design of the F-22.

14. Tools for Defining the Aerodynamic Environment.
CFD Tools. Establishing the Credibility of CFD Simulations. Ground-Based Test Programs. Flight-Test Programs. Integration of Experimental and Computational Tools: The Aerodynamic Design Philosophy.

Appendix A: The Equations of Motion Written in Conservation Form.
Appendix B: A Collection of Often Used Tables.

Ask a Question About this Product More...
Write your question below:
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Aerodynamics for Engineers: International Edition on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Back to top