COVID-19 Response at Fishpond.com.au

Read what we're doing...

Applied Multivariate Research
By

Rating

Product Description
Product Details

Table of Contents

Part I. The Basics of Multivariate Design Chapter 1. An Introduction to Multivariate Design Chapter 2. Some Fundamental Research Design Concepts Chapter 3A. Data Screening Chapter 3B. Data Screening Using IBM SPSS Part II. Comparisons of Means Chapter 4A. Univariate Comparison of Means Chapter 4B. Univariate Comparison of Means Using IBM SPSS Chapter 5A. Multivariate Analysis of Variance (MANOVA) Chapter 5B. Multivariate Analysis of Variance (MANOVA) Using IBM SPSS Part III. Predicting the Value of a Single Variable Chapter 6A. Bivariate Correlation and Simple Linear Regression Chapter 6B. Bivariate Correlation and Simple Linear Regression Using IBM SPSS Chapter 7A. Multiple Regression: Statistical Methods Chapter 7B. Multiple Regression: Statistical Methods Using IBM SPSS Chapter 8A. Multiple Regression: Beyond Statistical Regression Chapter 8B. Multiple Regression: Beyong Statistical Regression Using IBM SPSS Chapter 9A. Multilevel Modeling Chapter 9B. Multilevel Modeling Using IBM SPSS Chapter 10A. Binary and Multinomial Logistic Regression and ROC Analysis Chapter 10B. Binary and Multinomial Logistic Regression and ROC Analysis Using IBM SPSS Part IV. Analysis of Structure Chapter 11A. Discriminant Function Analysis Chapter 11B. Discriminant Function Analysis Using IBM SPSS Chapter 12A. Principal Components and Exploratory Factor Analysis Chapter 12B. Principal Components and Exploratory Factor Analysis Using IBM SPSS Chapter 13A. Canonical Correlation Analysis Chapter 13B. Canonical Correlation Analysis Using IBM SPSS Chapter 14A. Multidimensional Scaling Chapter 14B. Multidimensional Scaling Using IBM SPSS Chapter 15A. Cluster Analysis Chapter 15B. Cluster Analysis Using IBM SPSS Part V. Fitting Models to Data Chapter 16A. Confirmatory Factor Analysis Chapter 16B. Confirmatory Factor Analysis Using Amos Chapter 17A. Path Analysis: Multiple Regression Chapter 17B. Path Analysis: Multiple Regression Using IBM SPSS Chapter 18A. Path Analysis: Structural Modeling Chapter 18B. Path Analysis: Structural Modeling Using Amos Chapter 19A. Structural Equation Modeling Chapter 19B. Structural Equation Modeling Using Amos Chapter 20A. Model Invariance: Applying a Model to Different Groups Chapter 20B. Assessing Model Invariance Using Amos

About the Author

Lawrence S. Meyers earned his doctorate in experimental psychology and has been a Professor in the Psychology Department at California State University, Sacramento, for a number of years. He supervises research students and teaches research design courses as well as history of psychology at both the undergraduate and graduate levels. His areas of expertise include test development and validation. Glenn Gamst is Professor and Chair of the Psychology Department at the University of La Verne, where he teaches the doctoral advanced statistics sequence. His research interests include the effects of multicultural variables on clinical outcome. Additional research interests focus on conversation memory and discourse processing. He received his PhD in experimental psychology from the University of Arkansas. A. J. Guarino is a professor of biostatistics at Massachusetts General Hospital, Institute of Health Professions. He is the statistician on numerous National Institutes of Health grants and a reviewer on several research journals. He received his BA from the University of California, Berkeley, and a PhD in statistics and research methodologies from the Department of Educational Psychology, the University of Southern California.

Reviews

For me the comprehensive nature of the text is most important - even when I don't cover topics in class students gain value by being able to read about cluster analysis or ROC analysis in enough detail that they can conduct their own analyses. Students appreciate the integration with SPSS. There is an appropriate balance of "practice" and background so that students learn what they need to know about the techniques but also learn how to implement and interpret the analysis. -- E. Kevin Kelloway, Saint Mary's University
The key strengths are its clearly written explanations of OLS regression and logistic regression as well as its treatment of path analysis. -- Andrew Jorgenson, University of Utah
The comprehensive nature of the topics presented and the numerous figures and charts. -- Marie Kraska, Ph.D., Auburn University
Organization is excellent. -- Thomas J. Keil, Arizona State University
Well written and accessible. I find the additional readings at the end of the chapters to be valuable and have tracked down several of the sources for my own personal use. -- Glenn J. Hansen, University of Oklahoma
My students think the book is well written and the language is easy for them to understand -- Xiaofen Deng Keating, The University of Texas at Austin

Ask a Question About this Product More...
Write your question below:
Look for similar items by category
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 5% commission by selling Applied Multivariate Research: Design and Interpretation on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Back to top