Now Australia's Biggest Toy Shop

We won't be beaten by anyone. Guaranteed

Clinical Prediction Models
By

Rating
Product Details

Table of Contents

Introduction.- Applications of prediction models.- Study design for prediction models.- Statistical models for prediction.- Overfitting and optimism in prediction models.- Choosing between alternative statistical models.- Dealing with missing values.- Case study on dealing with missing values.- Coding of categorical and continuous predictors.- Restrictions on candidate predictors.- Selection of main effects.- Assumptions in regression models: Additivity and linearity.- Modern estimation methods.- Estimation with external methods.- Evaluation of performance.- Clinical usefulness.- Validation of prediction models.- Presentation formats.- Patterns of external validity.- Updating for a new setting.- Updating for a multiple settings.- Prediction of a binary outcome: 30-day mortality after acute myocardial infarction.- Case study on survival analysis: Prediction of secondary cardiovascular events.- Lessons from case studies.

Reviews

From the reviews: "This book covers an important topic, because these prediction models are essential for individualizing diagnostic and treatment decision making. The topic is of increased importance as evidence-based medicine is increasingly implemented and as scientific and technological advances reveal new potential predictors of outcome. This book presents an approach for developing, validating, and updating prediction models.... [I]t provides ways to optimally utilize regression techniques to predict an outcome.... This book is written in a clear and accessible style.... [A]valuable resource for anyone interested in developing or applying a prediction model." (Todd A. Alonzo, American Journal of Epidemiology, 2009; Vol. 170, No. 4) "Overall I think this is a well-written book, which will have a wide appeal. The idea of defining a strategy to deal with clinical prediction problems might be somewhat controversial, but considering the variable quality of statistical analyses that appear in the medical literature, I believe such an approach is desirable. The book appears to have struck a good balance between practical examples and descriptions of statistical techniques.... It is refreshing to see a practical book applying many modern regression techniques to real problems." (David Ohlssen, Journal of Biopharmaceutical Statistics, Issue 6, 2009) "Dr Steyerberg ... aims to provide an insight and also a practical illustration on how modern statistical concepts and regression methods can be applied in medical prediction outcomes. The book...will be of interest to those who work in medical cybernetics and indeed all cybernetics and systems researchers who are studying such medical problems and wish to apply statistical approaches and methodologies. It is worth examining the detailed contents list ... and individual chapters may be of particular value to potential readers." (C. J. H. Mann, Kybernetes, Vol. 38 (6), 2009) "The book ... will be of interest to those who work in medical cybernetics and indeed all cybernetics and systems researchers who are studying such medical problems and wish to apply statistical approaches and methodologies." (C. J. H. Mann, Kybernetes, Vol. 38, No. 6, 2009) "...and excellent practical guide for developing, assessing and updating clinical models both for disease prognosis and diagnosis. The book's clinical focus in this era of evidence-based medicine is refreshing and serves as a much-needed addition to statistical modeling of clinical data. The book assumes a basic familiarity with modeling using generalized linear models, focusing instead on the real challenges facing applied biostatisticians and epidemiologists wanting to create useful models: dealing with a plethora of model choices, small sample sizes, many candidate predictors and missing data. This is an example-based book illuminating the vagaries of clinical data and offering sound practical advice on data exploration, model selection and data presentation. ...The author uses simple simulations using a few reproducible R commands to motivate the use of imputation methods and shrinkage. These simple but illuminating illustrations are one of the highlights of the book and serve as excellent pedagogical tools for motivating good statistical thinking. ..." (International Statistical Review 2009, 77, 2) "This is an excellent text that should be read by anyone performing prediction modeling. ... the text has three audiences epidemiologists and applied biostatisticians who want to develop or apply a prediction model health care professionals who want to judge a study that presents a prediction model and theoretical researchers ... . I found the book very useful and I believe clinicians and policy makers will be similarly well served. ... All are excellent summaries for readers and provide links to resources for further investigation." (Chris Andrews, Technometrics, Vol. 53 (1), February, 2011)

Ask a Question About this Product More...
Write your question below:
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 5% commission by selling Clinical Prediction Models (Statistics for Biology and Health) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Back to top