Download the Free Fishpond App!
Download on the App Store

Android App on Google play
Computational Biomechanics: Theoretical Background and Biological/Biomedical Problems (A First Course in "in Silico Medicine")

Already own it?

Sell Yours
Home » Books » Nonfiction » Technology » Engineering » General

Computational Biomechanics

Theoretical Background and Biological/Biomedical Problems (A First Course in "in Silico Medicine")

By Masao Tanaka, Shigeo Wada, Masanori Nakamura

Elsewhere $129 $92.20   Save $36.80 (29%)
or 4 easy payments of $23.05 with What's this?
Free shipping Australia wide
Ships from UK
Order now for Christmas delivery
Rating:
 
Register or sign-in to rate and get recommendations.
Format: Paperback, 196 pages, 2012 Edition
Other Information: biography
Published In: Japan, 21 March 2012
Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called "in silico medicine." This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems in orthopedic and cardiovascular biomechanics, among others, are provided for better understanding of computational analysis and modeling. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, hemodynamics, cell mechanics, and model-, rule-, and image-based methods in computational biomechanics analysis and simulation. The book is an excellent resource for graduate school-level engineering students and young researchers in bioengineering and biomedicine.

Table of Contents

Chapter 1: Introduction1.1 Biomechanics: Mechanics in/for biology and medicine1.2 One-dimensional mechanics of biosolids and biofluids1.2.1 A dip into biosolid mechanics1.2.2 A dip into biofluid mechanics1.3 Addendum to one-dimensional mechanics1.3.1 Law of mixture1.3.2 Discrete model of continuum1.4 Biomechanics in biology and medicine: a tiny showcaseReferencesChapter 2: Mechanics of biosolids and computational analysis2.1 Fundamentals of solid mechanics2.1.1 Stress and force: Equilibrium equations2.1.2.Strain and displacement: Kinematic equations2.1.3 Constitutive equiations: Linear elasticity2.1.4 Constitutive equations: Nonlinear elasticity2.2 Mechanical properties of bone 2.1.2 Cortical bone 2.2.2 Cancellous bone2.3 Mechanical properties of soft tissue 2.3.1 Arteial wall 2.3.2 Skin 2.3.3 Cornea2.4 Principles of stationary potential energy and virtual work 2.4.1 Boundary value problems for equilibrium 2.4.2 Principle of virtual work 2.4.3 Principle of stationary potential energy2.5 Finite element method 2.5.1 Finite element discretization and approximation 2.5.2 Finite element equations for small strain linear elasticity 2.5.3 Finite element equations for finite strain hyperelasticity 2.5.4 Shape functions: Simplex, complex and multiplex elements 2.5.5 Shape functions: Isoparametric elements2.6 Computational biomechanics problems 2.6.1 Lattice continuum modeling for cancellous bone structure 2.6.2 Scoliotic deformation analysis of spinal column 2.6.3 Stress analysis of temporomandibular joint disc 2.6.4 Deformation analysis of cornea: inverse problems 2.6.5 Stress analysis of proximal femur: Image-based analysis and simulation2.7 SummaryReferencesChapter 3 Mechanics of biofluid and computational analysis3.1 Fundamentals of fluid mechanics 3.1.1 Viscous and inviscid fluid 3.1.2 Newtonian and non-Newtonian fluid 3.1.3 Compressible and incompressible fluids3.2 Dimensionless numbers 3.2.1 Reynolds number 3.2.2 Womersley number3.3 Eulerian and Lagrangian representations of fluid flow3.4 Governing equation of fluid flow 3.4.1 Equation of continuity 3.4.2 Navier-Stokes equation3.5 Euler-based Computational Fluid Dynamics 3.5.1 Discretization 3.5.2 Finite Volume Method3.6 Lagrange-based Computational Fluid Dynamics 3.6.1 Governing equations 3.6.2 Modeling of the interaction between particles 3.6.3 Algorithm of the MPS method3.7 Applications of Flow simulations to Biomechanical Problems 3.7.1 Analysis of Blood Flow in the Aorta 3.7.2 Analysis of Blood Flow in the Left Ventricle for the Interpretation of Color M-mode Doppler Echocardiogram 3.7.3 Fluid-Structure Interaction Analysis of Blood Flow for Differentiation of Vascular Diseases by Pulse Wave Propagation WAVE PROPAGATION 3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method 3.7.5 Fluid-Structure Interaction Analysis on the Behavior of Spherical Embolic Agents in a Vascular Bifurcation toward Pre-operation Planning of Transcatheter Embolization3.8 SummaryReferencesChapter 4: Spring Network Modeling based on the Energy Concept4.1 Fundamentals of spring network model4.1.1 Single spring model4.1.2 Network spring model4.1.3 Bending spring model4.1.4 Extended spring model4.1.5 Extension to continuum model4.2 Formulation and solving method4.2.1 Minimum energy problem4.2.2 Solving method4.3 Parameter identification of the spring network model4.3.1 Stretching spring constant4.3.2 Bending spring constant4.4 Mechanical behavior of a single red blood cell4.4.1 Minimum energy problem to determine the shape of RBC4.4.2 RBC behavior in a shear flow4.5 Mechanical properties of a eukaryotic cell4.5.1 Mechanocell model4.5.2 Application of mechanocell model to micro biomechanics4.6 Aneurysm development4.6.1 Modeling of aneurysm4.6.2 Rule-based simulation of aneurysm development4.7 Multiscale blood flow4.7.1 Modeling of multiple red blood cell flow4.7.2 Multiscale simulation of blood flow4.8 Summary References Chapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicineChapter 2: Mechanics of biosolids and computational analysis2.1 Fundamentals of solid mechanics2.1.1 Stress and force: Equilibrium equations2.1.2.Strain and displacement: Kinematic equations2.1.3 Constitutive equiations: Linear elasticity2.1.4 Constitutive equations: Nonlinear elasticity2.2 Mechanical properties of bone 2.1.2 Cortical bone 2.2.2 Cancellous bone2.3 Mechanical properties of soft tissue 2.3.1 Arteial wall 2.3.2 Skin 2.3.3 Cornea2.4 Principles of stationary potential energy and virtual work 2.4.1 Boundary value problems for equilibrium 2.4.2 Principle of virtual work 2.4.3 Principle of stationary potential energy2.5 Finite element method 2.5.1 Finite element discretization and approximation 2.5.2 Finite element equations for small strain linear elasticity 2.5.3 Finite element equations for finite strain hyperelasticity 2.5.4 Shape functions: Simplex, complex and multiplex elements 2.5.5 Shape functions: Isoparametric elements2.6 Computational biomechanics problems 2.6.1 Lattice continuum modeling for cancellous bone structure 2.6.2 Scoliotic deformation analysis of spinal column 2.6.3 Stress analysis of temporomandibular joint disc 2.6.4 Deformation analysis of cornea: inverse problems 2.6.5 Stress analysis of proximal femur: Image-based analysis and simulation2.7 SummaryReferencesChapter 3 Mechanics of biofluid and computational analysis3.1 Fundamentals of fluid mechanics 3.1.1 Viscous and inviscid fluid 3.1.2 Newtonian and non-Newtonian fluid 3.1.3 Compressible and incompressible fluids3.2 Dimensionless numbers 3.2.1 Reynolds number 3.2.2 Womersley number3.3 Eulerian and Lagrangian representations of fluid flow3.4 Governing equation of fluid flow 3.4.1 Equation of continuity 3.4.2 Navier-Stokes equation3.5 Euler-based Computational Fluid Dynamics 3.5.1 Discretization 3.5.2 Finite Volume Method3.6 Lagrange-based Computational Fluid Dynamics 3.6.1 Governing equations 3.6.2 Modeling of the interaction between particles 3.6.3 Algorithm of the MPS method3.7 Applications of Flow simulations to Biomechanical Problems 3.7.1 Analysis of Blood Flow in the Aorta 3.7.2 Analysis of Blood Flow in the Left Ventricle for the Interpretation of Color M-mode Doppler Echocardiogram 3.7.3 Fluid-Structure Interaction Analysis of Blood Flow for Differentiation of Vascular Diseases by Pulse Wave Propagation WAVE PROPAGATION 3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method 3.7.5 Fluid-Structure Interaction Analysis on the Behavior of Spherical Embolic Agents in a Vascular Bifurcation toward Pre-operation Planning of Transcatheter Embolization3.8 SummaryReferencesChapter 4: Spring Network Modeling based on the Energy Concept4.1 Fundamentals of spring network model4.1.1 Single spring model4.1.2 Network spring model4.1.3 Bending spring model4.1.4 Extended spring model4.1.5 Extension to continuum model4.2 Formulation and solving method4.2.1 Minimum energy problem4.2.2 Solving method4.3 Parameter identification of the spring network model4.3.1 Stretching spring constant4.3.2 Bending spring constant4.4 Mechanical behavior of a single red blood cell4.4.1 Minimum energy problem to determine the shape of RBC4.4.2 RBC behavior in a shear flow4.5 Mechanical properties of a eukaryotic cell4.5.1 Mechanocell model4.5.2 Application of mechanocell model to micro biomechanics4.6 Aneurysm development4.6.1 Modeling of aneurysm4.6.2 Rule-based simulation of aneurysm development4.7 Multiscale blood flow4.7.1 Modeling of multiple red blood cell flow4.7.2 Multiscale simulation of blood flow4.8 Summary References Chapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicineChapter 3 Mechanics of biofluid and computational analysis3.1 Fundamentals of fluid mechanics 3.1.1 Viscous and inviscid fluid 3.1.2 Newtonian and non-Newtonian fluid 3.1.3 Compressible and incompressible fluids3.2 Dimensionless numbers 3.2.1 Reynolds number 3.2.2 Womersley number3.3 Eulerian and Lagrangian representations of fluid flow3.4 Governing equation of fluid flow 3.4.1 Equation of continuity 3.4.2 Navier-Stokes equation3.5 Euler-based Computational Fluid Dynamics 3.5.1 Discretization 3.5.2 Finite Volume Method3.6 Lagrange-based Computational Fluid Dynamics 3.6.1 Governing equations 3.6.2 Modeling of the interaction between particles 3.6.3 Algorithm of the MPS method3.7 Applications of Flow simulations to Biomechanical Problems 3.7.1 Analysis of Blood Flow in the Aorta 3.7.2 Analysis of Blood Flow in the Left Ventricle for the Interpretation of Color M-mode Doppler Echocardiogram 3.7.3 Fluid-Structure Interaction Analysis of Blood Flow for Differentiation of Vascular Diseases by Pulse Wave Propagation WAVE PROPAGATION 3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method 3.7.5 Fluid-Structure Interaction Analysis on the Behavior of Spherical Embolic Agents in a Vascular Bifurcation toward Pre-operation Planning of Transcatheter Embolization3.8 SummaryReferencesChapter 4: Spring Network Modeling based on the Energy Concept4.1 Fundamentals of spring network model4.1.1 Single spring model4.1.2 Network spring model4.1.3 Bending spring model4.1.4 Extended spring model4.1.5 Extension to continuum model4.2 Formulation and solving method4.2.1 Minimum energy problem4.2.2 Solving method4.3 Parameter identification of the spring network model4.3.1 Stretching spring constant4.3.2 Bending spring constant4.4 Mechanical behavior of a single red blood cell4.4.1 Minimum energy problem to determine the shape of RBC4.4.2 RBC behavior in a shear flow4.5 Mechanical properties of a eukaryotic cell4.5.1 Mechanocell model4.5.2 Application of mechanocell model to micro biomechanics4.6 Aneurysm development4.6.1 Modeling of aneurysm4.6.2 Rule-based simulation of aneurysm development4.7 Multiscale blood flow4.7.1 Modeling of multiple red blood cell flow4.7.2 Multiscale simulation of blood flow4.8 Summary References Chapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicineChapter 4: Spring Network Modeling based on the Energy Concept4.1 Fundamentals of spring network model4.1.1 Single spring model4.1.2 Network spring model4.1.3 Bending spring model4.1.4 Extended spring model4.1.5 Extension to continuum model4.2 Formulation and solving method4.2.1 Minimum energy problem4.2.2 Solving method4.3 Parameter identification of the spring network model4.3.1 Stretching spring constant4.3.2 Bending spring constant4.4 Mechanical behavior of a single red blood cell4.4.1 Minimum energy problem to determine the shape of RBC4.4.2 RBC behavior in a shear flow4.5 Mechanical properties of a eukaryotic cell4.5.1 Mechanocell model4.5.2 Application of mechanocell model to micro biomechanics4.6 Aneurysm development4.6.1 Modeling of aneurysm4.6.2 Rule-based simulation of aneurysm development4.7 Multiscale blood flow4.7.1 Modeling of multiple red blood cell flow4.7.2 Multiscale simulation of blood flow4.8 Summary References Chapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicineChapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicine

EAN: 9784431540724
ISBN: 4431540725
Publisher: Springer Verlag, Japan
Dimensions: 22.86 x 15.24 x 1.52 centimetres (0.33 kg)
Age Range: 15+ years
Tell a friend

Their Email:

Sell Yours

Already own this item?
Sell Yours and earn some cash. It's fast and free to list! (Learn More.)

Review this Product

BAD GOOD
 

Related Searches

 

Webmasters, Bloggers & Website Owners

You can earn a 5% commission by selling Computational Biomechanics: Theoretical Background and Biological/Biomedical Problems (A First Course in "in Silico Medicine") on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep!

 

Authors/Publishers

Are you the Author/Publisher? Improve sales by submitting additional information on this title.

 

This item ships from and is sold by Fishpond World Ltd.