Warehouse Stock Clearance Sale

Grab a bargain today!


CubeSat Antenna Design
By

Rating

Product Description
Product Details

Table of Contents

Preface xi

Editor Biography xiii

Notes on Contributors xv

1 Introduction 1

1.1 Description of CubeSats 1

1.1.1 Introduction 1

1.1.2 Form Factors 3

1.1.3 Brief Introduction to CubeSat Subsystems 3

1.1.3.1 Attitude Control 3

1.1.3.2 Propulsion 6

1.1.3.3 Power 8

1.1.3.4 Telecommunication 9

1.1.4 CubeSat Antennas 11

1.1.4.1 Low Gain Antennas 11

1.1.4.2 Medium Gain Antennas 14

1.1.4.3 High Gain Antennas 15

1.1.5 Effect of Space Environment on Antennas 26

1.1.5.1 Radiation 26

1.1.5.2 Material Outgassing 27

1.1.5.3 Temperature Change 28

1.1.5.4 Multipaction Breakdown 29

1.2 Conclusion 30

2 Mars Cube One 35

2.1 Mission Description 35

2.2 Iris Radio 38

2.3 X-Band Subsystem 43

2.3.1 Frequency Allocation 43

2.3.2 Near Earth Communications Using Low Gain Antennas 43

2.3.2.1 Antenna Requirements 43

2.3.2.2 Antenna Solution and Performance 44

2.3.3 Mars-to-Earth Communications 46

2.3.3.1 Telecommunication Description: Uplink and Downlink from Mars 46

2.3.3.2 Mars Low Gain Antennas 48

2.3.3.3 High Gain Antenna 49

2.4 Entry, Descent, and Landing UHF Link 67

2.4.1 State-of-the-Art of UHF Deployable CubeSat Antennas 68

2.4.1.1 Four Monopole Antenna 68

2.4.1.2 Helical Antenna 68

2.4.1.3 Patch Antenna 70

2.4.2 Circularly Polarized Loop Antenna Concept 70

2.4.2.1 Loop Antenna Radiation and Polarization 70

2.4.2.2 Infinite Baluns Design and Shielded Loop 72

2.4.2.3 Feeding Structure 73

2.4.3 Mechanical Configuration and Deployment Scheme 74

2.4.4 Simulations and Measurements 78

2.4.5 In-Flight Performance 82

2.5 Conclusions 84

3 Radar in a CubeSat: RainCube 91

3.1 Mission Description 91

3.2 Deployable High-Gain Antenna 94

3.2.1 State of the Art 94

3.2.1.1 Inflatable Antennas 95

3.2.1.2 Deployable Reflectarray Antennas 95

3.2.1.3 Deployable Mesh Reflector Antennas 96

3.2.2 Parabolic Reflector Antenna Design 101

3.2.2.1 Paraboloidal Reflector 101

3.2.2.2 Dual-Reflector Antennas 102

3.2.3 RainCube High-Gain Antenna 104

3.2.3.1 Antenna Choice: Cassegrain Reflector 104

3.2.3.2 Antenna Description 104

3.2.3.3 Perfect Paraboloid Antenna 105

3.2.3.4 Unfurlable Paraboloid with Ribs and Mesh Structures 110

3.2.3.5 Antenna Measurement Results 119

3.2.4 Mechanical Deployment 122

3.2.5 Design and Testing for the Space Environment 127

3.2.6 In-Flight Performance 131

3.3 Telecommunication Challenge 131

3.4 Conclusion 134

4 One Meter Reflectarray Antenna: OMERA 139

4.1 Introduction 139

4.2 Reflectarray Antennas 141

4.2.1 Introductions to Reflectarray 141

4.2.2 Advantages of Reflectarray 141

4.2.3 Drawbacks of Reflectarray 142

4.2.4 State of the Art 142

4.3 OMERA 143

4.3.1 Antenna Description 143

4.3.2 Deployable Feed 146

4.3.3 Reflectarray Design 147

4.3.4 Deployment Accuracy 153

4.3.5 Effect of Struts 156

4.3.6 Predicted Gain and Efficiency 157

4.3.7 Prototype and Measurements 158

4.4 Conclusion 161

5 X/Ka-Band One Meter Mesh Reflector for 12U-Class CubeSat 163

5.1 Introduction 163

5.2 Mechanical Design 167

5.2.1 Trade Studies 167

5.2.1.1 Design Goals 167

5.2.1.2 Rigid 167

5.2.1.3 Elastic Composite 167

5.2.1.4 Mesh 168

5.2.2 Structural Design of the Reflector 168

5.2.2.1 Ribs 170

5.2.2.2 Hub 171

5.2.2.3 Battens 171

5.2.2.4 Nets 171

5.2.2.5 Perimeter Truss 174

5.2.3 Deployment 174

5.2.3.1 Boom Design and Deployment 174

5.2.3.2 Reflector Deployment 176

5.2.3.3 Deployment Issues 177

5.3 X/Ka RF Design 177

5.3.1 Antenna Configuration and Simulation Model 177

5.3.2 X-Band Feed and Mesh Reflector 179

5.3.3 Ka-Band Mesh Reflector 187

5.3.4 X/Ka-band Mesh Reflector 193

5.4 Conclusion 194

6 Inflatable Antenna for CubeSat 197

6.1 Introduction 197

6.2 Inflatable High Gain Antenna 199

6.2.1 State of the Art 199

6.2.1.1 History of Inflatable Antennas Research and Experiments 199

6.2.1.2 History of the Inflatable Antenna for CubeSat Concept 201

6.2.2 Inflatable Antenna Design at X-Band 207

6.2.2.1 Inflatable Antenna at X-Band: Initial Design and Lessons Learned 207

6.2.2.2 Inflatable Antenna at X-Band Final Design: Reflector and Feed Placement 208

6.2.2.3 Antenna Measurements 212

6.2.3 Structural Design 215

6.2.4 Inflation and On-Orbit Rigidization 220

6.3 Spacecraft Design Challenges 226

6.4 Conclusion 229

7 High Aperture Efficiency All-Metal Patch Array 233

7.1 Introduction 233

7.2 State of the Art 235

7.3 Dual-Band Circularly Polarized 8 × 8 Patch Array 240

7.3.1 Requirements 240

7.3.2 Unit Cell Optimization 240

7.3.3 8 × 8 Patch Array 244

7.3.4 Comparison With State-of-the-Art 247

7.3.5 Other Array Configurations 249

7.4 Conclusion 251

8 Metasurface Antennas: Flat Antennas for Small Satellites 255

8.1 Introduction 255

8.2 Modulated Metasurface Antennas 256

8.2.1 State of the Art: Pros and Cons 256

8.2.2 Design of Modulated Metasurface Antennas 260

8.2.3 300 GHz Silicon Micro-Machined MTS Antenna 269

8.2.3.1 Objective 269

8.2.3.2 Design Methodology: Modulation 270

8.2.3.3 MTS Element 270

8.2.3.4 Antenna Design, Fabrication, and Test 271

8.2.3.5 Improvement Using Anisotropic Surface 274

8.2.3.6 Conclusion 275

8.2.4 Ka-band Metal-Only Telecommunication Antenna 276

8.2.4.1 Objective 276

8.2.4.2 Synthesis of the Modulated Metasurface Antenna 277

8.2.4.3 Metallic Metasurface Elements 278

8.2.4.4 Antenna Design 279

8.2.4.5 Fabrication 280

8.2.4.6 Measurements 281

8.2.4.7 Toward a 20 cm Diameter Antenna 284

8.3 Beam Synthesis Using Holographic Metasurface Antennas 286

8.3.1 Introduction 286

8.3.2 Examples Holographic Metasurface Antennas 290

8.3.3 W-Band Pillbox Beam Steering Metasurface Antenna 294

8.3.4 Toward an Active Beam Steering Antenna 302

8.4 Conclusion 304

Acknowledgments 308

References 308

Index 315

About the Author

NACER CHAHAT, PHD, is a Senior Antenna/Microwave Engineer with the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA. He developed critical antenna technologies that have enabled new types of NASA missions, delivered antennas for Mars Cube One, the first deep space CubeSat, and delivered the deployable mesh reflector that has enabled Raincube, the first active radar in a CubeSat.

Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling CubeSat Antenna Design (IEEE Press) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top