Warehouse Stock Clearance Sale

Grab a bargain today!


Data Analysis Methods in Physical Oceanography
By

Rating

Product Description
Product Details

Table of Contents

Chapter and section headings: Preface. Acknowledgments. Data Acquisition and Recording. Introduction. Basic sampling requirements. Temperature. Salinity. Depth or pressure. Sea-level measurement. Eulerian currents. Lagrangian current measurements. Wind. Precipitation. Chemical tracers. Transient chemical tracers. Data Processing and Presentation. Introduction. Calibration. Interpolation. Data presentation. Statistical Methods and Error Handling. Introduction. Sample distributions. Probability. Moments and expected values. Common probability density functions. Central limit theorem. Estimation. Confidence intervals. Selecting the sample size. Confidence intervals for altimeter bias estimators. Estimation methods. Linear estimation (regression). Relationship between regression and correlation. Hypothesis testing. Effective degrees of freedom. Editing and despiking techniques: the nature of errors. Interpolation: filling the data gaps. Covariance and the covariance matrix. Bootstrap and jackknife methods. The Spatial Analyses of Data Fields. Traditional block and bulk averaging. Objective analysis. Empirical orthogonal functions. Normal mode analysis. Inverse methods. Time-series Analysis Methods. Basic concepts. Stochastic processes and stationarity. Correlation functions. Fourier analysis. Harmonic analysis. Spectral analysis. Spectral analysis (parametric methods). Cross-spectral analysis. Wavelet analysis. Digital filters. Fractals. Appendices.References. Index. 8 illus., 135 line drawings.

About the Author

Richard E. Thomson is a researcher in coastal and deep-sea physical oceanography within the Ocean Sciences Division. Coastal oceanographic processes on the continental shelf and slope including coastally trapped waves, upwelling and baroclinic instability; hydrothermal venting and the physics of buoyant plumes; linkage between circulation and zooplankton biomass aggregations at hydrothermal venting sites; analysis and modelling of landslide generated tsunamis; paleoclimate using tree ring records and sediment cores from coastal inlets and basins. William (Bill) Emery worked as a professor in Aerospace Engineering Sciences at the University of Colorado from 1987, prior to which he worked in the University of British Columbia where he created a Satellite Oceanography education/research program. He has authored over 220-refereed publications and 4 textbooks in addition to having given 200 conference papers. He is a fellow of: the IEEE (2002), the American Meteorological Society (2010), the American Astronautical Society (2011) and the American Geophysical Union (2012). He was recently elected to the IEEE TAB Hall of Honor (2020). In 2022 he received the GRSS Fawaz Ulaby Distinguised Achievement Award.

Reviews

from:A. Plueddemann, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
"...this is an excellent, practical text on data analysis, with minor improvements over the first edition." --Oceanography, Vol. 14, No. 4

from:P. Myers, University of Alberta, Canada
"...The book is well laid out, with the content easy to find and access. The statistical presentation, while mathematical, is clear and straightforward, without unnecessary complexity. ...I think this is an excellent book on the topic and it would be an ideal textbook for a graduate level course on geophysical data analysis. I could also see the book becoming a well referred to reference for researchers working with oceanographic data, whether from actual observations or from the output of numerical models." --CMOS Bulletin SCMO

Ask a Question About this Product More...
 
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top