Chapter 1. An Introduction to EELS
1.1. Interaction of Fast Electrons with a
Solid
1.2. The Electron Energy-Loss
Spectrum
1.3. The Development of Experimental Techniques
1.3.1. Energy-Selecting (Energy-Filtering) Electron
Microscopes
1.3.2. Spectrometers as Attachments to Electron
Microscopes
1.4. Alternative Analytical Methods
1.4.1. Ion-Beam Methods
1.4.2. Incident
Photons
1.4.3. Electron-Beam
Techniques
1.5. Comparison of EELS and EDX Spectroscopy
1.5.1. Detection Limits and Spatial
Resolution
1.5.2. Specimen
Requirements
1.5.3. Accuracy of Quantification
1.5.4. Ease of Use and Information Content
1.6. Further Reading
Chapter 2. Energy-Loss Instrumentation
2.1. Energy-Analyzing and Energy-Selecting
Systems
2.1.1. The Magnetic-Prism
Spectrometer
2.1.2. Energy-Filtering Magnetic-Prism
Systems
2.1.3. The Wien Filter
2.1.4. Electron
Monochromators
2.2. Optics of a Magnetic-Prism
Spectrometer
2.2.1. First-Order Properties
2.2.2. Higher-Order Focusing
2.2.3. Spectrometer Sesigns
2.2.4. Practical
Considerations
2.2.5. Spectrometer
Alignment
2.3. The Use of Prespectrometer
Lenses
2.3.1. TEM Imaging and Diffraction Modes
2.3.2. Effect of Lens Aberrations on Spatial
Resolution
2.3.3. Effect of Lens Aberrations on Collection
Efficiency
2.3.4. Effect of TEM Lenses on Energy Resolution
2.3.5. STEM Optics
2.4. Recording the Energy-Loss Spectrum
2.4.1.Spectrum Shift and Scanning
2.4.2. Spectrometer
Background
2.4.3. Coincidence Counting
2.4.4. Serial Recording of the Energy-Loss
Spectrum
2.4.5. DQE of a Single-Channel
System
2.4.6. Serial-Mode Signal Processing
2.5. Parallel Recording of Energy-Loss Data
2.5.1. Types of Self-Scanning Diode Array
2.5.2. Indirect Exposure
Systems
2.5.3. Direct Exposure
Systems
2.5.4. DQE of a Parallel-Recording System
2.5.5. Dealing with Diode Array
Artifacts
2.6. Energy-Selected Imaging (ESI)
2.6.1. Post-Column Energy
Filter
2.6.2. In-Column
Filters
2.6.3. Energy Filtering in STEM
Mode
2.6.4.
Spectrum-Imaging
2.6.5. Elemental Mapping
2.6.6. Comparison of Energy-Filtered TEM and
STEM
2.6.7. Z-Contrast and Z-Ratio
Imaging
Chapter 3. Physics of Electron
Scattering
3.1. Elastic Scattering
3.1.1. General
Formulas
3.1.2. Atomic Models
3.1.3. Diffraction Effects
3.1.4. Electron Channeling
3.1.5. Phonon
Scattering
3.1.6. Energy Transfer in Elastic Scattering
3.2. Inelastic
Scattering
3.2.1. Atomic Models
3.2.2. Bethe Theory
3.2.3. Dielectric Formulation
3.2.4. Solid-State Effects
3.3. Excitation of Outer-Shell
Electrons
3.3.1. Volume
Plasmons
3.3.2. Single-Electron
Excitation
3.3.3.
Excitons
3.3.4. Radiation
Losses
3.3.5. Surface
Plasmons
3.3.6. Surface-Reflection
Spectra
3.3.7. Plasmon Modes in Small
Particles
3.4. Single, Plural, and Multiple Scattering
3.4.1. Poisson's Law
3.4.2. Angular Distribution of Plural Inelastic
Scattering
3.4.3. Influence of Elastic Scattering
3.4.4. Multiple Scattering
3.4.5. Coherent Double-Plasmon Excitation
3.5. The Spectral Background to Inner-Shell Edges
3.5.1. Valence-Electron Scattering
3.5.2. Tails of Core-Loss
Edges
3.5.3. Bremsstrahlung Energy Losses
3.5.4. Plural Scattering Contributions to the
Background
3.6. Atomic Theory of Inner-Shell
Excitation
3.6.1. Generalized Oscillator
Strength
3.6.2. Relativistic Kinematics of Scattering
3.6.3. Ionization Cross
Sections
3.7. The Form of Inner-Shell Edges
3.7.1. Basic Edge
Shapes
3.7.2. Dipole Selection Rule
3.7.3. Effect of Plural
Scattering
3.7.4. Chemical Shifts in Threshold Energy
3.8. Near-Edge Fine Structure
(ELNES)
3.8.1. Densities-of-States
Interpretation
3.8.2. Multiple-Scattering
Interpretation
3.8.3. Molecular-Orbital
Theory
3.8.4. Multiplet and Crystal-Field
Effects
3.9. Extended Energy-Loss Fine Structure
(EXELFS)
3.10. Core Excitation in Anisotropic Materials
3.11. Delocalization of inelastic Scattering
Chapter 4. Quantitative Analysis of Energy-Loss
Data
4.1. Deconvolution of Low-Loss
Spectra
4.1.1. Fourier-Log Method
4.1.2. Fourier-Ratio Method
4.1.3. Bayesian
Deconvolution
4.1.4. Other Methods
4.2. Kramers–Kronig
Analysis
4.3.Deconvolution of Core-Loss
Data
4.3.1. Fourier-Log Method
4.3.2. Fourier-Ratio Method
4.3.3. Bayesian
Deconvolution
4.3.4. Other Methods
4.4. Separation of Spectral
Components
4.4.1. Least-Squares Fitting
4.4.2. Two-Area
Fitting
4.4.3. Background-Fitting
Errors
4.4.4. Multiple Least-Squares Fitting
4.4.5. Multivariate Statistical
Analysis
4.4.6. Energy- and Spatial-Difference
Techniques
4.5. Elemental Quantification
4.5.1. Integration Method
4.5.2. Calculation of Partial Cross Sections
4.5.3. Correction for Incident-Beam
Convergence
4.5.4. Quantification from MLS
Fitting
4.6. Analysis of Extended Energy-Loss Fine
Structure
4.6.1. Fourier-Transform
Method
4.6.2. Curve-Fitting
Procedure
4.7. Simulation of Energy-Loss Near-Edge Structure
(ELNES)
4.7.1. Multiple-Scattering
Calculations
4.7.2. Band-Structure
Calculations
Chapter 5. TEM Applications of EELS
5.1. Measurement of Specimen
Thickness
5.1.1. Log-Ratio
Method
5.1.2. Absolute Thickness from the K–K Sum Rule
5.1.3. Mass-Thickness from the Bethe Sum
Rule
5.2. Low-Loss Spectroscopy
5.2.1. Identification from Low-Loss Fine Structure
5.2.2. Measurement of Plasmon Energy and Alloy
Composition
5.2.3. Characterization of Small
Particles
5.3. Energy-Filtered Images and Diffraction
Patterns
5.3.1. Zero-Loss
Images
5.3.2. Zero-Loss Diffraction Patterns
5.3.3. Low-Loss
Images
5.3.4. Z-Ratio Images
5.3.5.Contrast Tuning and MPL
Imaging
5.3.6. Core-Loss Images and Elemental
Mapping
5.4. Elemental Analysis from Core-Loss
Spectroscopy
5.4.1. Measurement of Hydrogen and
Helium
5.4.2. Measurement of Lithium, Beryllium, and
Boron
5.4.3. Measurement of Carbon, Nitrogen, and
Oxygen
5.4.4. Measurement of Fluorine and Heavier
Elements
5.5. Spatial Resolution and Detection Limits
5.5.1. Electron-Optical
Considerations
5.5.2. Loss of Resolution due to Elastic
Scattering
5.5.3. Delocalization of Inelastic Scattering
5.5.4. Statistical Limitations and Radiation Damage
5.6. Structural Information from
EELS
5.6.1. Orientation Dependence of Ionization Edges
5.6.2. Core-Loss Diffraction Patterns
5.6.3. ELNES Fingerprinting
5.6.4. Valency and Magnetic Measurements from White-Line
Ratios
5.6.5. Use of Chemical Shifts
5.6.6. Use of Extended Fine
Structure
5.6.7. Electron-Compton (ECOSS) Measurements
5.7. Application to Specific
Materials
5.7.1. Semiconductors and Electronic
Devices
5.7.2. Ceramics and High-Temperature
Superconductors
5.7.3. Carbon-Based
Materials
5.7.4. Polymers and Biological
Specimens
5.7.5. Radiation Damage and Hole
Drilling
Appendix A. Bethe Theory forHigh Incident Energies and Anisotropic Materials
Appendix B. Computer Programs
B.1. First-Order Spectrometer
Focusing
B.2. Cross Sections for Atomic Displacement and High-Angle Elastic
Scattering
B.3. Lenz-Model Elastic and Inelastic
CrossSections
B.4. Simulation of a Plural-Scattering
Distribution
B.5. Fourier-Log
Deconvolution
B.6. Maximum-Likelihood Deconvolution
B.7. Drude Simulation of a Low-Loss
Spectrum
B.8. Kramers-Kronig
Analysis
B.9. Kröger Simulation of a Low-Loss
Spectrum
B.10. Core-Loss Simulation
B.11. Fourier-Ratio Deconvolution
B.12. Incident-Convergence
Correction
B.13. Hydrogenic K-shell Cross
Sections
B.14. Modified-Hydrogenic L-shell Cross Sections
B.15. Parameterized K-, L-, N-, N- and O-shell Cross
Sections B.16.
Measurement of Absolute Specimen
Thickness
B.17. Total-Inelastic and Plasmon Mean Free Paths
B.18. Constrained Power-Law Background
Fitting
Appendix C. Plasmon Energies and Inelastic Mean Free Paths
Appendix D. Inner-Shell Energies and Edge Shapes
Appendix E. Electron Wavelengths and Relativistic Factors; Physical Constants
Appendix F. Options for Energy-Loss Data Acquisition
References
Indexetc.
From the reviews of the third edition:“R.F. Egerton’s Electron Energy-loss Spectroscopy in the Electron Microscope is the standard text on the subject … . The book is now very up-to-date; R.F. Egerton has clearly continued adding to the text and references up to the last minute … . Springer have printed the book beautifully, with colour in place when needed and the references now give full details … . EEL spectroscopists … cannot do without this new edition.” (Ultramicroscopy, Vol. 116, 2012)
Ask a Question About this Product More... |