Overview of Supervised Learning.- Linear Methods for Regression.- Linear Methods for Classification.- Basic Expansions and Regularization.- Kernel Methods.- Model Assessment and Selection.- Model Inference and Averaging.- Additive Models, Trees, and Related Methods.- Boosting and Additive Trees.- Neural Networks.- Support Vector Machines and Flexible Discriminates.- Prototype Methods and Nearest Neighbors.- Unsupervised Learning.
![]() |
Ask a Question About this Product More... |
![]() |