Warehouse Stock Clearance Sale

Grab a bargain today!


Flexible Parametric Survival Analysis Using Stata
By

Rating

Product Description
Product Details

Table of Contents

Introduction
Goals
A brief review of the Cox proportional hazards model
Beyond the Cox model
Why parametric models?
Why not standard parametric models?
A brief introduction to stpm
Basic relationships in survival analysis
Comparing models
The delta method
Ado-file resources
How our book is organized

Using stset and stsplit
What is the stset command?
Some key concepts
Syntax of the stset command
Variables created by the stset command
Examples of using stset
The stsplit command
Conclusion

Graphical introduction to the principal datasets
Introduction
Rotterdam breast cancer data
England and Wales breast cancer data
Orchiectomy data
Conclusion

Poisson models
Introduction
Modeling rates with the Poisson distribution
Splitting the time scale
Collapsing the data to speed up computation
Splitting at unique failure times
Comparing a different number of intervals
Fine splitting of the time scale
Splines: Motivation and definition
FPs: Motivation and definition
Discussion

Royston–Parmar models
Motivation and introduction
Proportional hazards models
Selecting a spline function
PO models
Probit models
Royston–Parmar (RP) models
Concluding remarks

Prognostic models
Introduction
Developing and reporting a prognostic model
What does the baseline hazard function mean?
Model selection
Quantitative outputs from the model
Goodness of fit
Out-of-sample prediction: Concept and applications
Visualization of survival times
Discussion

Time-dependent effects
Introduction
Definitions
What do we mean by a TD effect?
Proportional on which scale?
Poisson models with TD effects
RP models with TD effects
TD effects for continuous variables
Attained age as the time scale
Multiple time scales
Prognostic models with TD effects
Discussion

Relative survival
Introduction
What is relative survival?
Excess mortality and relative survival
Motivating example
Life-table estimation of relative survival
Poisson models for relative survival
RP models for relative survival
Some comments on model selection
Age as a continuous variable
Concluding remarks

Further topics
Introduction
Number needed to treat
Average and adjusted survival curves
Modeling distributions with RP models
Multiple events
Bayesian RP models
Competing risks
Period analysis
Crude probability of death from relative survival models
Final remarks
References
Author index
Subject index

About the Author

Patrick Royston is a senior medical statistician at the Medical Research Council, London, UK. He has published research papers on a variety of topics in leading statistics journals. His key interests include multivariable modeling and validation, survival analysis, design and analysis of clinical trials, and statistical computing and algorithms. He is an associate editor of the Stata Journal. Paul Lambert is a reader in medical statistics at Leicester University, UK. His main interest is in the development and application of statistical methods in population-based cancer research and related fields. He has published widely in leading statistical and medical journals.

Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond.com, Inc.

Back to top