Now Australia's Biggest Toy Shop

We won't be beaten by anyone. Guaranteed

Modeling and Reasoning with Bayesian Networks
By

Rating

Product Description
Product Details

Table of Contents

1. Introduction; 2. Propositional logic; 3. Probability calculus; 4. Bayesian networks; 5. Building Bayesian networks; 6. Inference by variable elimination; 7. Inference by factor elimination; 8. Inference by conditioning; 9. Models for graph decomposition; 10. Most likely instantiations; 11. The complexity of probabilistic inference; 12. Compiling Bayesian networks; 13. Inference with local structure; 14. Approximate inference by belief propagation; 15. Approximate inference by stochastic sampling; 16. Sensitivity analysis; 17. Learning: the maximum likelihood approach; 18. Learning: the Bayesian approach; Appendix A: notation; Appendix B: concepts from information theory; Appendix C: fixed point iterative methods; Appendix D: constrained optimization.

Promotional Information

This book introduces the formal foundations and practical applications of Bayesian networks.

About the Author

Adnan Darwiche is a Professor in the Department of Computer Science at UCLA.

Reviews

'... both practical and advanced ... The first five chapters are sufficient for students and practitioners to gain the necessary knowledge in order to build Bayesian networks for moderately sized applications with the aid of a software tool ... All major inference methods are covered in later chapters which allow researchers and software developers to implement their own software systems tailored to their needs ... It is a comprehensive book that can be used for self study by students and newcomers to the field or as a companion for courses on probabilistic reasoning. Experienced researchers may also find deeper information on some topics. In my opinion, the book should definitely be [on] the bookshelf of everyone who teaches Bayesian networks and builds probabilistic reasoning agents.' Artificial Intelligence
'[This] book will make an excellent textbook; it covers topics suitable for both undergraduate and graduate courses. It will also help practitioners get a firm grasp of the fundamentals of modeling and inference with BNs, as well as some recent advances.' ACM Computing Reviews
"Bayesian networks are as important to AI and machine learning as Boolean circuits are to computer science. Adnan Darwiche is a leading expert in this area and this book provides a superb introduction to both theory and practice, with much useful material not found elsewhere." Stuart Russell, University of California, Berkeley
"Bayesian networks have revolutionized AI. This book gives a clear and insightful overview of what we have learnt in 25 years of research, by one of the leading researchers. It is both accessible and deep, making it essential reading for both beginning students and advanced researchers." David Poole, Professor of Computer Science University of British Columbia
"Bayesian Networks are models for representing and using probabilistic knowledge, introduced in the field of Artificial Intelligence by Judea Pearl back in the 1980's. Since then many inference methods, learning algorithms, and applications of Bayesian Networks have been developed, tested, and deployed, making Bayesian Networks into a solid and established framework for reasoning with uncertain information. Adnan Darwiche, a leading researcher in the field, has produced a book that provides a clear, coherent, and advanced introduction to Bayesian Networks that will appeal to students, practitioners, and scientists alike. A wonderful exposition that starts with propositional logic and probability calculus, and ends with state-of-the-art inference methods and learning algorithms. In my view, the best book on Bayesian Networks since Pearl's seminal book." Hector Geffner, ICREA and Universitat Pompeu Fabra
"The book is both practical and advanced... The book should definitely be in the bookshelf of everyone who teaches Bayesian networks and builds probabilistic reasoning agents." Yang Xiang, Artificial Intelligence
"... a comprehensive presentation..." Dorota Kurowicka, Mathematical Reviews
"The book is clearly written. In all, the clarity, continuity, and depth of the presentation mean that this would make a first class course text, as well as serving as a very useful reference work. I shall certainly recommend it for teaching purposes, and doubtless refer to it to remind myself about particular aspects of such models." David J. Hand, International Statistical Review
"This is an elegant and well-written book. The book provides an accessible walkthrough and formal treatment of BNs grounded in propositional logic. The book will make an excellent textbook; it covers topics suitable for both undergraduate and graduate courses. It will also help practitioners get a firm grasp of the fundamentals of modeling and inference with BNs, as well as some recent advances." Yousri ElFattah, Computing Reviews

Ask a Question About this Product More...
Write your question below:
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 5% commission by selling Modeling and Reasoning with Bayesian Networks on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond Retail Limited.
Back to top