Now Australia's Biggest Toy Store

Turn your Clutter Into Cash with SmartSell.TM Book a Courier Pickup Today!

Prior Processes and Their Applications
By

Rating
This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and Polya tree and their extensions form a separate chapter, while the last two chapters present the Bayesian solutions to certain estimation problems pertaining to the distribution function and its functional based on complete data as well as right censored data. Because of the conjugacy property of some of these processes, most solutions are presented in closed form. However, the current interest in modeling and treating large-scale and complex data also poses a problem - the posterior distribution, which is essential to Bayesian analysis, is invariably not in a closed form, making it necessary to resort to simulation. Accordingly, the book also introduces several computational procedures, such as the Gibbs sampler, Blocked Gibbs sampler and slice sampling, highlighting essential steps of algorithms while discussing specific models. In addition, it features crucial steps of proofs and derivations, explains the relationships between different processes and provides further clarifications to promote a deeper understanding. Lastly, it includes a comprehensive list of references, equipping readers to explore further on their own.
Product Details

Table of Contents

Prior Processes.- Inference Based on Complete Data.- Inference Based on Incomplete Data.

About the Author

Eswar Phadia received his doctorate from Ohio State University and has been on the faculty of William Paterson University of New Jersey for nearly four decades, during which he has served as Chairman of the Department, Director of Research and Dean of the College of Science and Health. He has published numerous papers in the areas of Nonparametric Bayesian Inference, Survival Analysis, and Decision Theory in scientific journals including the Annals of Statistics. He has been the recipient of several NSF grants, State grants and University awards. He was a visiting faculty/scholar at UCLA, Harvard, UC, Davis, and spent sabbaticals at Rutgers, Columbia and the University of Pennsylvania. He has presented papers at professional meetings nationally and internationally and has given seminars and lectures in the United States and in Canada, China, India, Jordan and Singapore. He is a member of the Institute of Mathematical Statistics, the American Statistical Association and an elected member of the International Statistical Institute.

Look for similar items by category
Home » Books » Science » Mathematics » Statistics » General
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 5% commission by selling Prior Processes and Their Applications: Nonparametric Bayesian Estimation (Springer Series in Statistics) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.
Back to top