Warehouse Stock Clearance Sale

Grab a bargain today!


Problems and Theorems in Analysis
By

Rating

Product Description
Product Details

Table of Contents

Four. Functions of One Complex Variable. Special Part.- 1. Maximum Term and Central Index, Maximum Modulus and Number of Zeros.- 2. Schlicht Mappings.- 3. Miscellaneous Problems.- Five. The Location of Zeros.- 1. Rolle’s Theorem and Descartes’ Rule of Signs.- 2. The Geometry of the Complex Plane and the Zeros of Polynomials.- 3. Miscellaneous Problems.- Six. Polynomials and Trigonometric Polynomials.- § 1 (1–7) Tchebychev Polynomials.- § 2 (8–15) General Problems on Trigonometric Polynomials.- § 3 (16–28) Some Special Trigonometric Polynomials.- § 4 (29–38) Some Problems on Fourier Series.- § 5 (39–43) Real Non-negative Trigonometric Polynomials.- § 6 (44–49) Real Non-negative Polynomials.- § 7 (50–61) Maximum-Minimum Problems on Trigonometric Polynomials.- § 8 (62–66) Maximum-Minimum Problems on Polynomials.- § 9 (67–76) The Lagrange Interpolation Formula.- § 10 (77–83) The Theorems of S. Bernstein and A. Markov.- § 11 (84–102) Legendre Polynomials and Related Topics.- § 12 (103–113) Further Maximum-Minimum Problems on Polynomials.- Seven. Determinants and Quadratic Forms.- § 1 (1–16) Evaluation of Determinants. Solution of Linear Equations.- § 2 (17–34) Power Series Expansion of Rational Functions.- § 3 (35–43.2) Generation of Positive Quadratic Forms.- § 4 (44–54.4) Miscellaneous Problems.- § 5 (55–72) Determinants of Systems of Functions.- Eight. Number Theory.- 1. Arithmetical Functions.- 2. Polynomials with Integral Coefficients and Integral-Valued Functions.- 3. Arithmetical Aspects of Power Series.- 4. Some Problems on Algebraic Integers.- 5. Miscellaneous Problems.- Nine. Geometric Problems.- § 1 (1–25) Some Geometric Problems.- Errata.- § 1 Additional Problems to Part One.- New Problems in EnglishEdition.- Author Index.- Topics.

Promotional Information

Springer Book Archives

About the Author

Biography of George Polya Born in Budapest, December 13, 1887, George Polya initially studied law, then languages and literature in Budapest. He came to mathematics in order to understand philosophy, but the subject of his doctorate in 1912 was in probability theory and he promptly abandoned philosophy. After a year in Gottingen and a short stay in Paris, he received an appointment at the ETH in Zurich. His research was multi-faceted, ranging from series, probability, number theory and combinatorics to astronomy and voting systems. Some of his deepest work was on entire functions. He also worked in conformal mappings, potential theory, boundary value problems, and isoperimetric problems in mathematical physics, as well as heuristics late in his career. When Polya left Europe in 1940, he first went to Brown University, then two years later to Stanford, where he remained until his death on September 7, 1985. Biography of Gabor Szego Born in Kunhegyes, Hungary, January 20, 1895, Szego studied in Budapest and Vienna, where he received his Ph. D. in 1918, after serving in the Austro-Hungarian army in the First World War. He became a privatdozent at the University of Berlin and in 1926 succeeded Knopp at the University of Ksnigsberg. It was during his time in Berlin that he and Polya collaborated on their great joint work, the Problems and Theorems in Analysis. Szego's own research concentrated on orthogonal polynomials and Toeplitz matrices. With the deteriorating situation in Germany at that time, he moved in 1934 to Washington University, St. Louis, where he remained until 1938, when he moved to Stanford. As department head at Stanford, he arranged for Polya to join the Stanford faculty in 1942. Szego remained at Stanford until his death on August 7, 1985.

Reviews

From the reviews: "... In the past, more of the leading mathematicians proposed and solved problems than today, and there were problem departments in many journals. Pólya and Szego must have combed all of the large problem literature from about 1850 to 1925 for their material, and their collection of the best in analysis is a heritage of lasting value. The work is unashamedly dated. With few exceptions, all of its material comes from before 1925. We can judge its vintage by a brief look at the author indices (combined). Let's start on the C's: Cantor, Carathéodory, Carleman, Carlson, Catalan, Cauchy, Cayley, Cesàro,... Or the L's: Lacour, Lagrange, Laguerre, Laisant, Lambert, Landau, Laplace, Lasker, Laurent, Lebesgue, Legendre,... Omission is also information: Carlitz, Erdös, Moser, etc."
-Bull.Americ.Math.Soc.

Ask a Question About this Product More...
 
Look for similar items by category
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Problems and Theorems in Analysis: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry: v. 2 (Classics in Mathematics) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond Retail Limited.

Back to top