Preface xix
Preface to the Second Edition xxi
Preface to the First Edition xxiii
1 Foundations of Pyrodynamics 1
1.1 Heat and Pressure 1
1.1.1 First Law of Thermodynamics 1
1.1.2 Specific Heat 2
1.1.3 Entropy Change 4
1.2 Thermodynamics in a Flow Field 5
1.2.1 One-Dimensional Steady-State Flow 5
1.2.1.1 Sonic Velocity and Mach Number 5
1.2.1.2 Conservation Equations in a Flow Field 6
1.2.1.3 Stagnation Point 6
1.2.2 Formation of Shock Waves 7
1.2.3 Supersonic Nozzle Flow 10
1.3 Formation of Propulsive Forces 12
1.3.1 Momentum Change and Thrust 12
1.3.2 Rocket Propulsion 14
1.3.2.1 Thrust Coefficient 15
1.3.2.2 Characteristic Velocity 15
1.3.2.3 Specific Impulse 16
1.3.3 Gun Propulsion 17
1.3.3.1 Thermochemical Process of Gun Propulsion 17
1.3.3.2 Internal Ballistics 18
1.4 Formation of Destructive Forces 20
1.4.1 Pressure and Shock Wave 20
1.4.2 Shock Wave Propagation and Reflection in Solid Materials 21
References 21
2 Thermochemistry of Combustion 23
2.1 Generation of Heat Energy 23
2.1.1 Chemical Bond Energy 23
2.1.2 Heat of Formation and Heat of Explosion 24
2.1.3 Thermal Equilibrium 25
2.2 Adiabatic Flame Temperature 26
2.3 Chemical Reaction 31
2.3.1 Thermal Dissociation 31
2.3.2 Reaction Rate 31
2.4 Evaluation of Chemical Energy 32
2.4.1 Heats of Formation of Reactants and Products 33
2.4.2 Oxygen Balance 33
2.4.3 Thermodynamic Energy 36
References 39
3 Combustion Wave Propagation 41
3.1 Combustion Reactions 41
3.1.1 Ignition and Combustion 41
3.1.2 Premixed and Diffusion Flames 42
3.1.3 Laminar and Turbulent Flames 42
3.2 Combustion Wave of a Premixed Gas 43
3.2.1 Governing Equations for the Combustion Wave 43
3.2.2 Rankine–Hugoniot Relationships 44
3.2.3 Chapman–Jouguet Points 46
3.3 Structures of Combustion Waves 49
3.3.1 Detonation Wave 49
3.3.2 Deflagration Wave 52
3.4 Ignition Reactions 54
3.4.1 The Ignition Process 54
3.4.2 Thermal Theory of Ignition 54
3.4.3 Flammability Limit 55
3.5 Combustion Waves of Energetic Materials 56
3.5.1 Thermal Theory of Burning Rate 56
3.5.1.1 Thermal Model of Combustion Wave Structure 56
3.5.1.2 Thermal Structure in the Condensed Phase 59
3.5.1.3 Thermal Structure in the Gas Phase 59
3.5.1.4 Burning Rate Model 62
3.5.2 Flame Stand-Off Distance 64
3.5.3 Burning Rate Characteristics of Energetic Materials 66
3.5.3.1 Pressure Exponent of Burning Rate 66
3.5.3.2 Temperature Sensitivity of Burning Rate 66
3.5.4 Analysis of Temperature Sensitivity of Burning Rate 66
3.5.5 Chemical Reaction Rate in Combustion Wave 69
References 71
4 Energetics of Propellants and Explosives 73
4.1 Crystalline Materials 73
4.1.1 Physicochemical Properties of Crystalline Materials 73
4.1.2 Perchlorates 76
4.1.2.1 Ammonium Perchlorate 77
4.1.2.2 Nitronium Perchlorate 77
4.1.2.3 Potassium Perchlorate 78
4.1.3 Nitrates 78
4.1.3.1 Ammonium Nitrate 78
4.1.3.2 Potassium Nitrate and Sodium Nitrate 79
4.1.3.3 Pentaerythrol Tetranitrate 79
4.1.3.4 Triaminoguanidine Nitrate 80
4.1.4 Nitro Compounds 80
4.1.5 Nitramines 80
4.2 Polymeric Materials 82
4.2.1 Physicochemical Properties of Polymeric Materials 82
4.2.2 Nitrate Esters 82
4.2.3 Inert Polymers 84
4.2.4 Azide Polymers 87
4.2.4.1 GAP 88
4.2.4.2 BAMO 90
4.3 Classification of Propellants and Explosives 91
4.4 Formulation of Propellants 94
4.5 Nitropolymer Propellants 96
4.5.1 Single-Base Propellants 96
4.5.2 Double-Base Propellants 96
4.5.2.1 NC–NG Propellants 97
4.5.2.2 NC–TMETN Propellants 99
4.5.2.3 Nitro-Azide Polymer Propellants 99
4.5.2.4 Chemical Materials of Double-Base Propellants 100
4.6 Composite Propellants 100
4.6.1 AP Composite Propellants 101
4.6.1.1 AP–HTPB Propellants 101
4.6.1.2 AP–GAP Propellants 103
4.6.1.3 Chemical Materials of AP Composite Propellants 104
4.6.2 AN Composite Propellants 104
4.6.3 Nitramine Composite Propellants 104
4.6.4 HNF Composite Propellants 106
4.6.5 TAGN Composite Propellants 108
4.7 Composite-Modified Double-Base Propellants 108
4.7.1 AP–CMDB Propellants 110
4.7.2 Nitramine CMDB Propellants 110
4.7.3 Triple-Base Propellants 112
4.8 Black Powder 113
4.9 Formulation of Explosives 114
4.9.1 Industrial Explosives 114
4.9.1.1 ANFO Explosives 114
4.9.1.2 Slurry Explosives 114
4.9.2 Military Explosives 115
4.9.2.1 TNT-Based Explosives 115
4.9.2.2 Plastic-Bonded Explosives 115
References 116
5 Combustion of Crystalline and Polymeric Materials 119
5.1 Combustion of Crystalline Materials 119
5.1.1 Ammonium Perchlorate (AP) 119
5.1.1.1 Thermal Decomposition 119
5.1.1.2 Burning Rate 120
5.1.1.3 Combustion Wave Structure 121
5.1.2 Ammonium Nitrate (AN) 121
5.1.2.1 Thermal Decomposition 121
5.1.3 HMX 122
5.1.3.1 Thermal Decomposition 122
5.1.3.2 Burning Rate 122
5.1.3.3 Gas-Phase Reaction 123
5.1.3.4 Combustion Wave Structure and Heat Transfer 124
5.1.4 Triaminoguanidine Nitrate (TAGN) 126
5.1.4.1 Thermal Decomposition 126
5.1.4.2 Burning Rate 130
5.1.4.3 Combustion Wave Structure and Heat Transfer 130
5.1.5 ADN (Ammonium Dinitramide) 132
5.1.6 HNF (Hydrazinium Nitroformate) 134
5.2 Combustion of Polymeric Materials 135
5.2.1 Nitrate Esters 135
5.2.1.1 Decomposition of Methyl Nitrate 136
5.2.1.2 Decomposition of Ethyl Nitrate 136
5.2.1.3 Overall Decomposition Process of Nitrate Esters 137
5.2.1.4 Gas-Phase Reactions of NO2 and NO 137
5.2.2 Glycidyl Azide Polymer (GAP) 139
5.2.2.1 Thermal Decomposition and Burning Rate 139
5.2.2.2 Combustion Wave Structure 142
5.2.3 Bis-azide Methyl Oxetane (BAMO) 142
5.2.3.1 Thermal Decomposition and Burning Rate 142
5.2.3.2 Combustion Wave Structure and Heat Transfer 146
References 148
6 Combustion of Double-Base Propellants 151
6.1 Combustion of NC-NG Propellants 151
6.1.1 Burning Rate Characteristics 151
6.1.2 Combustion Wave Structure 152
6.1.2.1 Gas-Phase Reaction Zones 156
6.1.2.2 A Simplified Reaction Model in Fizz Zone 157
6.1.3 Burning Rate Model 160
6.1.3.1 Model for Heat Feedback from the Gas Phase to the Condensed Phase 160
6.1.3.2 Burning Rate Calculated by a Simplified Gas-Phase Model 160
6.1.4 Energetics of the Gas Phase and Burning Rate 162
6.1.5 Temperature Sensitivity of Burning Rate 168
6.2 Combustion of NC-TMETN Propellants 171
6.2.1 Burning Rate Characteristics 171
6.2.2 Combustion Wave Structure 173
6.3 Combustion of Nitro-Azide Propellants 173
6.3.1 Burning Rate Characteristics 173
6.3.2 Combustion Wave Structure 174
6.4 Catalyzed Double-Base Propellants 176
6.4.1 Super-Rate, Plateau, and Mesa Burning 176
6.4.2 Effects of Lead Catalysts 177
6.4.2.1 Burning Rate Behavior of Catalyzed Liquid Nitrate Esters 177
6.4.2.2 Effect of Lead Compounds on Gas-Phase Reactions 178
6.4.3 Combustion of Catalyzed Double-Base Propellants 179
6.4.3.1 Burning Rate Characteristics 179
6.4.3.2 Reaction Mechanism in the Dark Zone 182
6.4.3.3 Reaction Mechanism in the Fizz Zone Structure 184
6.4.4 Combustion Models of Super-Rate, Plateau, and Mesa Burning 184
6.4.5 LiF-Catalyzed Double-Base Propellants 187
6.4.6 Ni-Catalyzed Double-Base Propellants 189
6.4.7 Suppression of Super-Rate and Plateau Burning 191
References 193
7 Combustion of Composite Propellants 195
7.1 AP Composite Propellants 195
7.1.1 Combustion Wave Structure 195
7.1.1.1 Premixed Flame of AP Particles and Diffusion Flame 195
7.1.1.2 Burning Rate Model of Granular Diffusion Theory 199
7.1.1.3 Combustion Wave Structure of Oxidizer-Rich AP Propellants 200
7.1.2 Burning Rate Characteristics 203
7.1.2.1 Effect of AP Particle Size 203
7.1.2.2 Effect of the Binder 205
7.1.2.3 Temperature Sensitivity 208
7.1.3 Catalyzed AP Composite Propellants 210
7.1.3.1 Positive Catalysts 211
7.1.3.2 LiF Negative Catalyst 213
7.1.3.3 SrCO3 Negative Catalyst 216
7.2 Nitramine Composite Propellants 219
7.2.1 Burning Rate Characteristics 220
7.2.1.1 Effect of Nitramine Particle Size 220
7.2.1.2 Effect of Binder 220
7.2.2 Combustion Wave Structure 221
7.2.3 HMX-GAP Propellants 224
7.2.3.1 Physicochemical Properties of Propellants 224
7.2.3.2 Burning Rate and Combustion Wave Structure 224
7.2.4 Catalyzed Nitramine Composite Propellants 227
7.2.4.1 Super-Rate Burning of HMX Composite Propellants 227
7.2.4.2 Super-Rate Burning of HMX-GAP Propellants 228
7.2.4.3 LiF Catalysts for Super-Rate Burning 230
7.2.4.4 Catalyst Action of LiF on Combustion Wave 232
7.3 AP-Nitramine Composite Propellants 235
7.3.1 Theoretical Performance 235
7.3.2 Burning Rate 236
7.3.2.1 Effects of AP/RDX Mixture Ratio and Particle Size 236
7.3.2.2 Effect of Binder 238
7.4 TAGN-GAP Composite Propellants 241
7.4.1 Physicochemical Characteristics 241
7.4.2 Burning Rate and Combustion Wave Structure 242
7.5 AN-Azide Polymer Composite Propellants 243
7.5.1 AN-GAP Composite Propellants 243
7.5.2 AN-(BAMO-AMMO)-HMX Composite Propellants 246
7.6 AP-GAP Composite Propellants 247
7.7 ADN, HNF, and HNIW Composite Propellants 249
References 250
8 Combustion of CMDB Propellants 253
8.1 Characteristics of CMDB Propellants 253
8.2 AP-CMDB Propellants 253
8.2.1 Flame Structure and Combustion Mode 253
8.2.2 Burning Rate Models 255
8.3 Nitramine-CMDB Propellants 258
8.3.1 Flame Structure and Combustion Mode 258
8.3.2 Burning Rate Characteristics 261
8.3.3 Thermal Wave Structure 262
8.3.4 Burning Rate Model 267
8.4 Plateau Burning of Catalyzed HMX-CMDB Propellants 269
8.4.1 Burning Rate Characteristics 269
8.4.2 Combustion Wave Structure 270
8.4.2.1 Flame Stand-Off Distance 270
8.4.2.2 Catalyst Activity 271
8.4.2.3 Heat Transfer at the Burning Surface 273
References 275
9 Combustion of Explosives 277
9.1 Detonation Characteristics 277
9.1.1 Detonation Velocity and Pressure 277
9.1.2 Estimation of Detonation Velocity of CHNO Explosives 279
9.1.3 Equation of State for Detonation of Explosives 280
9.2 Density and Detonation Velocity 280
9.2.1 Energetic Explosive Materials 280
9.2.2 Industrial Explosives 281
9.2.2.1 ANFO Explosives 282
9.2.2.2 Slurry and Emulsion Explosives 282
9.2.3 Military Explosives 283
9.2.3.1 TNT-Based Explosives 283
9.2.3.2 Plastic-Bonded Explosives 284
9.3 Critical Diameter 285
9.4 Applications of Detonation Phenomena 285
9.4.1 Formation of a Flat Detonation Wave 285
9.4.2 Munroe Effect 287
9.4.3 Hopkinnson Effect 288
9.4.4 Underwater Explosion 289
References 292
10 Formation of Energetic Pyrolants 293
10.1 Differentiation of Propellants, Explosives, and Pyrolants 293
10.1.1 Thermodynamic Energy of Pyrolants 294
10.1.2 Thermodynamic Properties 295
10.2 Energetics of Pyrolants 296
10.2.1 Reactants and Products 296
10.2.2 Generation of Heat and Products 297
10.3 Energetics of Elements 297
10.3.1 Physicochemical Properties of Elements 297
10.3.2 Heats of Combustion of Elements 299
10.4 Selection Criteria of Chemicals 300
10.4.1 Characteristics of Pyrolants 300
10.4.2 Physicochemical Properties of Pyrolants 304
10.4.3 Formulations of Pyrolants 306
10.5 Oxidizer Components 309
10.5.1 Metallic Crystalline Oxidizers 310
10.5.1.1 Potassium Nitrate 310
10.5.1.2 Potassium Perchlorate 311
10.5.1.3 Potassium Chlorate 311
10.5.1.4 Barium Nitrate 311
10.5.1.5 Barium Chlorate 311
10.5.1.6 Strontium Nitrate 312
10.5.1.7 Sodium Nitrate 312
10.5.2 Metallic Oxides 312
10.5.3 Metallic Sulfides 313
10.5.4 Fluorine Compounds 313
10.6 Fuel Components 314
10.6.1 Metallic Fuels 314
10.6.2 Nonmetallic Solid Fuels 316
10.6.2.1 Boron 316
10.6.2.2 Carbon 316
10.6.2.3 Silicon 317
10.6.2.4 Sulfur 317
10.6.3 Polymeric Fuels 317
10.6.3.1 Nitropolymers 317
10.6.3.2 Polymeric Azides 318
10.6.3.3 Hydrocarbon Polymers 318
10.7 Metal Azides 318
References 319
11 Combustion Propagation of Pyrolants 321
11.1 Physicochemical Structures of Combustion Waves 321
11.1.1 Thermal Decomposition and Heat Release Process 321
11.1.2 Homogeneous Pyrolants 322
11.1.3 Heterogeneous Pyrolants 322
11.1.4 Pyrolants as Igniters 323
11.2 Combustion of Metal Particles 324
11.2.1 Oxidation and Combustion Processes 325
11.2.1.1 Aluminum Particles 325
11.2.1.2 Magnesium Particles 325
11.2.1.3 Boron Particles 326
11.2.1.4 Zirconium Particles 326
11.3 Black Powder 326
11.3.1 Physicochemical Properties 326
11.3.2 Reaction Process and Burning Rate 327
11.4 Li–SF6 Pyrolants 327
11.4.1 Reactivity of Lithium 327
11.4.2 Chemical Characteristics of SF6 328
11.5 Zr Pyrolants 328
11.5.1 Reactivity with BaCrO4 328
11.5.2 Reactivity with Fe2O3 329
11.6 Mg-Tf Pyrolants 329
11.6.1 Thermochemical Properties and Energetics 329
11.6.2 Reactivity of Mg and Tf 331
11.6.3 Burning Rate Characteristics 331
11.6.4 Combustion Wave Structure 334
11.7 B - KNO3 Pyrolants 336
11.7.1 Thermochemical Properties and Energetics 336
11.7.2 Burning Rate Characteristics 336
11.8 Ti - KNO3 and Zr - KNO3 Pyrolants 338
11.8.1 Oxidation Process 338
11.8.2 Burning Rate Characteristics 338
11.9 Metal-GAP Pyrolants 339
11.9.1 Flame Temperature and Combustion Products 339
11.9.2 Thermal Decomposition Process 340
11.9.3 Burning Rate Characteristics 340
11.10 Ti-C Pyrolants 341
11.10.1 Thermochemical Properties of Titanium and Carbon 341
11.10.2 Reactivity of Tf with Ti-C Pyrolants 341
11.10.3 Burning Rate Characteristics 342
11.11 NaN3 Pyrolants 342
11.11.1 Thermochemical Properties of NaN3 Pyrolants 342
11.11.2 NaN3 Pyrolant Formulations 343
11.11.3 Burning Rate Characteristics 344
11.11.4 Combustion Residue Analysis 344
11.12 GAP-AN Pyrolants 345
11.12.1 Thermochemical Characteristics 345
11.12.2 Burning Rate Characteristics 345
11.12.3 Combustion Wave Structure and Heat Transfer 345
11.13 Nitramine Pyrolants 346
11.13.1 Physicochemical Properties 346
11.13.2 Combustion Wave Structures 346
11.14 B-AP Pyrolants 347
11.14.1 Thermochemical Characteristics 347
11.14.2 Burning Rate Characteristics 348
11.14.3 Burning Rate Analysis 350
11.14.4 Site and Mode of Boron Combustion in the Combustion Wave 352
11.15 Friction Sensitivity of Pyrolants 353
11.15.1 Definition of Friction Energy 353
11.15.2 Effect of Organic Iron and Boron Compounds 354
References 357
12 Emission from Combustion Products 359
12.1 Fundamentals of Light Emission 359
12.1.1 Nature of Light Emission 359
12.1.2 Black-Body Radiation 360
12.1.3 Emission and Absorption by Gases 361
12.2 Light Emission from Flames 362
12.2.1 Emission from Gaseous Flames 362
12.2.2 Continuous Emission from Hot Particles 362
12.2.3 Colored Light Emitters 362
12.3 Smoke Emission 363
12.3.1 Physical Smoke and Chemical Smoke 363
12.3.2 White Smoke Emitters 364
12.3.3 Black Smoke Emitters 365
12.4 Smokeless Pyrolants 366
12.4.1 Nitropolymer Pyrolants 366
12.4.2 Ammonium Nitrate Pyrolants 367
12.5 Smoke Characteristics of Pyrolants 368
12.6 Smoke and Flame Characteristics of Rocket Motors 374
12.6.1 Smokeless and Reduced Smoke 374
12.6.2 Suppression of Rocket Plume 376
12.6.2.1 Effect of Chemical Reaction Suppression 379
12.6.2.2 Effect of Nozzle Expansion 380
12.7 HCl Reduction from AP Propellants 383
12.7.1 Background of HCl Reduction 383
12.7.2 Reduction of HCl by the Formation of Metal Chlorides 385
12.8 Reduction of Infrared Emission from Combustion Products 387
12.9 Green Propellants 388
12.9.1 AN-Composite Propellants 389
12.9.2 ADN- and HNF-Composite Propellants 390
12.9.3 Nitramine Composite Propellants 390
12.9.4 TAGN-GAP Composite Propellants 391
12.9.5 NP Propellants 391
References 392
13 Transient Combustion of Propellants and Pyrolants 393
13.1 Ignition Transient 393
13.1.1 Convective and Conductive Ignition 393
13.1.2 Radiative Ignition 396
13.2 Ignition for Combustion 398
13.2.1 Description of the Ignition Process 398
13.2.2 Ignition Process 400
13.3 Erosive Burning Phenomena 402
13.3.1 Threshold Velocity 402
13.3.2 Effect of Cross-Flow 404
13.3.3 Heat Transfer through a Boundary Layer 404
13.3.4 Determination of Lenoir–Robilard Parameters 406
13.4 Combustion Instability 409
13.4.1 T∗ Combustion Instability 409
13.4.2 L∗ Combustion Instability 411
13.4.3 Acoustic Combustion Instability 414
13.4.3.1 Nature of Oscillatory Combustion 414
13.4.3.2 Combustion Instability Test 415
13.4.3.3 Model for Suppression of Combustion Instability 423
13.5 Combustion under Acceleration 424
13.5.1 Burning Rate Augmentation 424
13.5.2 Effect of Aluminum Particles 425
13.6 Wired Propellant Burning 426
13.6.1 Heat-Transfer Process 426
13.6.2 Burning-Rate Augmentation 428
References 432
14 Rocket Thrust Modulation 435
14.1 Combustion Phenomena in a Rocket Motor 435
14.1.1 Thrust and Burning Time 435
14.1.2 Combustion Efficiency in a Rocket Motor 437
14.1.3 Stability Criteria for a Rocket Motor 440
14.1.4 Temperature Sensitivity of Pressure in a Rocket Motor 442
14.2 Dual-Thrust Motor 444
14.2.1 Principles of a Dual-Thrust Motor 444
14.2.2 Single-Grain Dual-Thrust Motor 445
14.2.3 Dual-Grain Dual-Thrust Motor 446
14.2.3.1 Mass Generation Rate and Mass Discharge Rate 446
14.2.3.2 Determination of Design Parameters 448
14.2.4 Thrust Modulator 451
14.3 Pulse Rocket Motor 451
14.3.1 Design Concept of Pulse Motor 451
14.3.2 Operational Flight Design of Pulse Motor 452
14.3.3 Combustion Test Results of a Two-Pulse Rocket Motor 454
14.4 Erosive Burning in a Rocket Motor 455
14.4.1 Head-End Pressure 455
14.4.2 Determination of Erosive-Burning Effect 456
14.5 Nozzleless Rocket Motor 459
14.5.1 Principles of the Nozzleless Rocket Motor 459
14.5.2 Flow Characteristics in a Nozzleless Rocket 460
14.5.3 Combustion Performance Analysis 462
14.6 Gas-Hybrid Rockets 463
14.6.1 Principles of the Gas-Hybrid Rocket 463
14.6.2 Thrust and Combustion Pressure 466
14.6.3 Pyrolants Used as Gas Generators 466
References 469
15 Ducted Rocket Propulsion 471
15.1 Fundamentals of Ducted Rocket Propulsion 471
15.1.1 Solid Rockets, Liquid Ramjets, and Ducted Rockets 471
15.1.2 Structure and Operational Process 472
15.2 Design Parameters of Ducted Rockets 473
15.2.1 Thrust and Drag 473
15.2.2 Determination of Design Parameters 474
15.2.3 Optimum Flight Envelope 475
15.2.4 Specific Impulse of Flight Mach Number 476
15.3 Performance Analysis of Ducted Rockets 477
15.3.1 Fuel-Flow System 477
15.3.1.1 Non-choked Fuel-Flow System 478
15.3.1.2 Fixed Fuel-Flow System 478
15.3.1.3 Variable Fuel-Flow System 478
15.4 Principle of the Variable Fuel-Flow Ducted Rocket 479
15.4.1 Optimization of Energy Conversion 479
15.4.2 Control of Fuel-Flow Rate 479
15.5 Energetics of Gas-Generating Pyrolants 482
15.5.1 Required Physicochemical Properties 482
15.5.2 Burning Rate Characteristics of Gas-Generating Pyrolants 483
15.5.2.1 Burning Rate and Pressure Exponent 483
15.5.2.2 Wired Gas-Generating Pyrolants 484
15.5.3 Pyrolants for Variable Fuel-Flow Ducted Rockets 485
15.5.4 GAP Pyrolants 486
15.5.5 Metal Particles as Fuel Components 487
15.5.6 GAP-B Pyrolants 488
15.5.7 AP Composite Pyrolants 490
15.5.8 Effect of Metal Particles on Combustion Stability 490
15.6 Combustion Tests for Ducted Rockets 491
15.6.1 Combustion Test Facility 491
15.6.2 Combustion of Variable-Flow Gas Generator 493
15.6.3 Combustion Efficiency of Multiport Air Intake 497
References 500
A Appendix A: List of Abbreviations of Energetic Materials 503
B Appendix B: Mass and Heat Transfer in a Combustion Wave 505
B.1 Conservation Equations at a Steady State in a One-Dimensional Flow Field 505
B.1.1 Mass Conservation Equation 505
B.1.2 Momentum Conservation Equation 506
B.1.3 Energy Conservation Equation 506
B.1.4 Conservation Equations of Chemical Species 507
B.2 Generalized Conservation Equations at a Steady State in a Flow Field 508
C Appendix C: Shock Wave Propagation in a Two-Dimensional Flow Field 509
C.1 Oblique Shock Wave 509
C.2 Expansion Wave 513
C.3 Diamond Shock Wave 514
References 515
D Appendix D: Supersonic Air Intake 517
D.1 Compression Characteristics of Diffusers 517
D.1.1 Principles of a Diffuser 517
D.1.2 Pressure Recovery 518
D.2 Air Intake System 521
D.2.1 External Compression System 521
D.2.2 Internal Compression System 522
D.2.3 Air Intake Design 522
References 524
E Appendix E: Measurements of Burning Rate and Combustion Wave Structure 525
Index 527
Naminosuke Kubota received a Doctorate from Princeton University in 1973, majoring “Solid Propellant Combustion” and “Rocket Propulsion”. He was Director, Third Research Center (TRDI), Defense Ministry of Japan, which is responsible for aircraft and missiles.
Ask a Question About this Product More... |