Download the Free Fishpond App!
Download on the App Store

Android App on Google play
Rough Sets and Data Mining: Analysis of Imprecise Data

Already own it?

Sell Yours
Home » Books » Computers » Server & Database » General Database

Rough Sets and Data Mining

Analysis of Imprecise Data

By T. Y. Lin (Edited by), Nick Cercone (Edited by)

Elsewhere $356 $252   Save $104.00 (29%)
or 4 easy payments of $63 with What's this?
Free shipping Australia wide
Ships from local warehouse
Order Now for Christmas with e-Gift
Register or sign-in to rate and get recommendations.
Format: Hardcover, 436 pages, 1997 Edition
Other Information: biography
Published In: United States, 30 November 1996
Rough Sets and Data Mining: Analysis of Imprecise Data is an edited collection of research chapters on the most recent developments in rough set theory and data mining. The chapters in this work cover a range of topics that focus on discovering dependencies among data, and reasoning about vague, uncertain and imprecise information. The authors of these chapters have been careful to include fundamental research with explanations as well as coverage of rough set tools can be used for mining data bases. Rough Sets and Data Mining: Analysis of Imprecise Data will be a useful reference work for rough set researchers, data base designers and developers, and for researchers new to the areas of data mining and rough sets.

Table of Contents

Preface. Part I: Expositions. 1. Rough Sets; Z. Pawlak. 2. Data Mining: Trends in Research and Development; J. Deogun, et al. 3. A Review of Rough Set Models; Y.Y. Yao, et al. 4. Rough Control: A Perspective; T. Munakata. Part II: Applications. 5. Machine Learning & Knowledge Acquisition, Rough Sets, and the English Semantic Code; J. Grzymala-Busse, et al. 6. Generation of Multiple Knowledge from Databases Based on Rough Set Theory; X. Hu, et al. 7. Fuzzy Controllers: An Integrated Approach Based on Fuzzy Logic, Rough Sets, and Evolutionary Computing; T.Y. Lin. 8. Rough Real Functions and Rough Controllers; Z. Pawlak. 9. A Fusion of Rough Sets, Modified Rough Sets, and Genetic Algorithms for Hybrid Diagnostic Systems; R. Hashemi, et al. 10. Rough Sets as a Tool for Studying Attribute Dependencies in the Urinary Stones Treatment Data Set; J. Stefanowski, K. Slowinski. Part III: Related Areas. 11. Data Mining Using Attribute-Oriented Generalization and Information Reduction; N. Cercone, et al. 12. Neighborhoods, Rough Sets, and Query Relaxation in Cooperative Answering; J.B. Michael, T.Y. Lin. 13. Resolving Queries Through Cooperation in Multi-Agent Systems; Z. Ras. 14. Synthesis of Decision Systems From Data Tables; A. Skowron, L. Polkowski. 15. Combination of Rough and Fuzzy Sets Based on Alpha-Level Sets; Y.Y. Yao. 16. Theories that Combine Many Equivalence and Subset Relations; J. Zytkow, R. Zembowicz. Part IV: Generalization. 17. Generalized Rough Sets in Contextual Spaces; E. Bryniarski, U. Wybraniec- Skardowksa. 18. Maintenance of Reducts in the Variable Precision Rough Set Model; M. Kryszkiewicz. 19. Probabilistic Rough Classifiers with Mixture of Discrete and Continuous Attributes; A. Lenarcik, Z. Piasta. 20. Algebraic Formulation of Machine Learning Methods Based on Rough Sets, Matroid Theory, and Combinatorial Geometry; S. Tsumoto, H. Tanaka. 21. Topological Rough Algebras; A. Wasilewska. Index.

EAN: 9780792398073
ISBN: 0792398076
Publisher: Kluwer Academic Publishers
Dimensions: 24.33 x 16.89 x 3.15 centimetres (0.81 kg)
Age Range: 15+ years
Tell a friend

Their Email:

Sell Yours

Already own this item?
Sell Yours and earn some cash. It's fast and free to list! (Learn More.)

Review this Product


Webmasters, Bloggers & Website Owners

You can earn a 5% commission by selling Rough Sets and Data Mining: Analysis of Imprecise Data on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep!



Are you the Author/Publisher? Improve sales by submitting additional information on this title.