Hurry - Only 4 left in stock!
|
An introduction to crystal
structures
Introduction
Close-packing
Body-centred and primitive structures
Symmetry
Lattices and unit cells
Crystalline solids
Lattice Energy
Physical methods for characterizing solids
Introduction
X-ray Diffraction
Powder Diffraction
Single Crystal X-ray Diffraction
Neutron Diffraction
Electron Microscopy
Scanning Probe Microscopy, SPM
Atomic Force Microscopy, AFM
X-ray Absorption Spectroscopy, XAS
Solid-state Nuclear Magnetic Resonance Spectroscopy
Thermal Analysis
Temperature Programmed Reduction, TPR
Other Techniques
Synthesis of solids
Introduction
High temperature ceramic methods
Microwave synthesis
Combustion synthesis
High pressure methods
Chemical vapour deposition (CVD)
Preparing single crystals
Intercalation
Synthesis of Nanomaterials
Choosing a method
Bonding in solids and their electronic
properties
Bonding in solids - free electron theory
Bonding in solids - molecular orbital theory
Semiconductors - Si and Ge
Bands in compounds - Gallium Arsenide
Bands in d-block compounds - transition metal monoxides
Classical Modelling
Defects and non-stoichiometry
Point Defects -
an introduction
Defects and their concentration
Ionic conductivity in solids
Solid Electrolytes
Applications of solid electrolytes
Colour Centres
Non-stoichiometric compounds
Extended defects
Three-dimensional defects
Electronic properties of non-stoichiometric oxides
Microporous and Mesoporous solids
Zeolites
Other microporous framework structures
Mesoporous structures
New materials
Clay minerals
Optical properties of solids
Introduction
The interaction of light with atoms
Absorption and emission of radiation in continuous solids
Refraction
Photonic Crystals
Metamaterials - 'cloaks of invisibility'
Magnetic and Electrical
Properties
Introduction
Magnetic susceptibility
Paramagnetism in metal complexes
Ferromagnetic metals
Ferromagnetic compounds - chromium dioxide
Antiferromagnetism - transition metal monoxides
Ferrimagnetism - ferrites
Spiral Magnetism
Giant, Tunnelling, and Colossal Magnetoresistance
Electrical polarisation
Piezoelectric crystals
The Ferroelectric Effect
Multiferroics
Superconductivity
Introduction
Conventional superconductors
High temperature superconductors
Uses of high-temperature superconductors
Nanostructures and solids with low-dimensional
properties
Nanoscience
Consequences of the nanoscale
Low-dimensional and nano-structural carbon
Carbon-based conducting polymers
Non-carbon nanoparticles
Non-carbon nanofilms and nanolayers
Non-carbon nanotubes, nanorods and nanowires
Lesley E. Smart and Elaine A. Moore are with the Department of Chemistry and Analytical Sciences at The Open University, UK.
"Smart and Moore are engaging writers, providing clear
explanations for concepts in solid-state chemistry from the
atomic/molecular perspective. The fourth edition is a welcome
addition to my bookshelves. ... What I like most about Solid
State Chemistry is that it gives simple clear descriptions for
a large number of interesting materials and correspondingly clear
explanations of their applications. Solid State Chemistry could be
used for a solid state textbook at the third or fourth year
undergraduate level, especially for chemistry programs. It is also
a useful resource for beginning graduate students in materials
chemistry, physics and engineering programs, and for materials
researchers at all levels of experience."
-Mary Anne White, Dalhousie University, Halifax, Canada, Journal
of Materials Education Vol. 35, 2013
![]() |
Ask a Question About this Product More... |
![]() |