Preface.- 1 Introduction.- Part I Matrix Groups.- 2 Concrete Matrix Groups.- 3 The Matrix Exponential Function.- 4 Linear Lie Groups.- Part II Lie Algebras.- 5 Elementary Structure Theory of Lie Algebras.- 6 Root Decomposition.- 7 Representation Theory of Lie Algebras.- Part III Manifolds and Lie Groups.- 8 Smooth Manifolds.- 9 Basic Lie Theory.- 10 Smooth Actions of Lie Groups.- Part IV Structure Theory of Lie Groups.- 11 Normal Subgroups, Nilpotemt and Solvable Lie Groups.- 12 Compact Lie Groups.- 13 Semisimple Lie Groups.- 14 General Structure Theory.- 15 Complex Lie Groups.- 16 Linearity of Lie Groups.- 17 Classical Lie Groups.- 18 Nonconnected Lie Groups.- Part V Appendices.- A Basic Covering Theory.- B Some Multilinear Algebra.- C Some Functional Analysis.- D Hints to Exercises.- References.- Index.
From the reviews:“The monograph under review is an introduction to the structure theory and geometry of Lie groups accessible both to a broad range of mathematicians and to graduate students. … The book consists of twenty one chapters divided into five parts. It starts with an introduction which presents the structure of the book, contains various teaching suggestions and introduces some fundamental notation.” (Volodymyr Mazorchuk, Zentralblatt MATH, Vol. 1229, 2012)
![]() |
Ask a Question About this Product More... |
![]() |