Absolutely Australia's Lowest Prices

Shop over 1.5 Million Toys in our Huge New Range

Tensor Analysis on Manifolds
By

Rating

Product Description
Product Details

Table of Contents

Chapter 0/Set Theory and Topology 0.1. SET THEORY 0.1.1. Sets 0.1.2. Set Operations 0.1.3. Cartesian Products 0.1.4. Functions 0.1.5. Functions and Set Operations 0.1.6. Equivalence Relations 0.2. TOPOLOGY 0.2.1. Topologies 0.2.2. Metric Spaces 0.2.3. Subspaces 0.2.4. Product Topologies 0.2.5. Hausdorff Spaces 0.2.6. Continuity 0.2.7. Connectedness 0.2.8. Compactness 0.2.9. Local Compactness 0.2.10. Separability 0.2.11 Paracompactness Chapter 1/Manifolds 1.1. Definition of a Mainifold 1.2. Examples of Manifolds 1.3. Differentiable Maps 1.4. Submanifolds 1.5. Differentiable Maps 1.6. Tangents 1.7. Coordinate Vector Fields 1.8. Differential of a Map Chapter 2/Tensor Algebra 2.1. Vector Spaces 2.2. Linear Independence 2.3. Summation Convention 2.4. Subspaces 2.5. Linear Functions 2.6. Spaces of Linear Functions 2.7. Dual Space 2.8. Multilinear Functions 2.9. Natural Pairing 2.10. Tensor Spaces 2.11. Algebra of Tensors 2.12. Reinterpretations 2.13. Transformation Laws 2.14. Invariants 2.15. Symmetric Tensors 2.16. Symmetric Algebra 2.17. Skew-Symmetric Tensors 2.18. Exterior Algebra 2.19. Determinants 2.20. Bilinear Forms 2.21. Quadratic Forms 2.22. Hodge Duality 2.23. Symplectic Forms Chapter 3/Vector Analysis on Manifolds 3.1. Vector Fields 3.2. Tensor Fields 3.3. Riemannian Metrics 3.4. Integral Curves 3.5. Flows 3.6. Lie Derivatives 3.7. Bracket 3.8. Geometric Interpretation of Brackets 3.9. Action of Maps 3.10. Critical Point Theory 3.11. First Order Partial Differential Equations 3.12. Frobenius' Theorem Appendix to Chapter 3 3A. Tensor Bundles 3B. Parallelizable Manifolds 3C. Orientability Chapter 4/Integration Theory 4.1. Introduction 4.2. Differential Forms 4.3. Exterior Derivatives 4.4. Interior Products 4.5. Converse of the Poincare Lemma 4.6. Cubical Chains 4.7. Integration on Euclidean Spaces 4.8. Integration of Forms 4.9. Strokes' Theorem 4.10. Differential Systems Chapter 5/Riemannian and Semi-riemannian Manifolds 5.1. Introduction 5.2. Riemannian and Semi-riemannian Metrics 5.3. "Lengeth, Angle, Distance, and Energy" 5.4. Euclidean Space 5.5. Variations and Rectangles 5.6. Flat Spaces 5.7. Affine connexions 5.8 Parallel Translation 5.9. Covariant Differentiation of Tensor Fields 5.10. Curvature and Torsion Tensors 5.11. Connexion of a Semi-riemannian Structure 5.12. Geodesics 5.13. Minimizing Properties of Geodesics 5.14. Sectional Curvature Chapter 6/Physical Application 6.1 Introduction 6.2. Hamiltonian Manifolds 6.3. Canonical Hamiltonian Structure on the Cotangent Bundle 6.4. Geodesic Spray of a Semi-riemannian Manifold 6.5. Phase Space 6.6. State Space 6.7. Contact Coordinates 6.8. Contact Manifolds Bibliography Index

Ask a Question About this Product More...
Write your question below:
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 5% commission by selling Tensor Analysis on Manifolds (Dover Books on Mathematics) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.
Back to top