Warehouse Stock Clearance Sale

Grab a bargain today!


Non-Linear Elastic Deformations
By

Rating

Product Description
Product Details

Table of Contents

Acknowlegements Preface Chapter 1 Tensor Theory 1.1 Euclidean vector space 1.1.1 Orthonormal Bases and Components 1.1.2 Change of Basis 1.1.3 Euclidean Point Space: Cartesian Coordinates 1.2 Cartesian tensors 1.2.1 Motivation: Stress in a Continuum 1.2.2 Definition of a Cartesian Tensor 1.2.3 The Tensor Product 1.2.4 Contraction 1.2.5 Isotropic Tensors 1.3 Tensor algebra 1.3.1 Second-order Tensors 1.3.2 Eigenvalues and Eigenvectors of a Second-order Tensor 1.3.3 Symmetric Second-order Tensors 1.3.4 Antisymmetric Second-order Tensors 1.3.5 Orthogonal Second-order Tensors 1.3.6 Highter-order Tensors 1.4 Contravariant and covariant tensors 1.4.1 Reciprocal Basis. Contravariant and Covariant Components 1.4.2 Change of Basis 1.4.3 Dual Space.General Tensors 1.5 Tensor fields 1.5.1 The Gradient of a Tensor Field 1.5.2 Symbolic Notation for Differential Operators 1.5.3 Differentiation in Cartesian Coordinates 1.5.4 Differentiation in Curvilinear Coordinates 1.5.5 Curves and Surfaces 1.5.6 Integration of Tensor Fields References Chapter 2 Analysis of Deformation and Motion 2.1 Kinematics 2.1.1 Observers and Frames of Reference 2.1.2 Configurations and Motions 2.1.3 Reference Configuratins and Deformations 2.1.4 Rigid-body Motions 2.2 Analsis of deformation and strain 2.2.1 The Deformation Gradient 2.2.2 Deformation of Volume and Surface 2.2.3 "Strain, Stretch, Extension and Shear" 2.2.4 Polar Decomposition of the Deformation Gradient 2.2.5 Geometrical Interpretations of the Deformation 2.2.6 Examples of Deformations 2.2.7 Strain Tensors 2.2.8 Change of Reference Configuration or Observer 2.3 Analysis of motion 2.3.1 Deformation and Strain Rates 2.3.2 Spins of the Lagrangean an Eulerian Axes 2.4 Objectivity of tensor fields 2.4.1 Eulerian and Lagrangean Objectivity 2.4.2 Embedded components of tensors References "Chapter 3 Balance Laws, Stress and Field Equations" 3.1 Mass conservation 3.2 Momentum balance equations 3.3 The Cauchy stress tensor 3.3.1 Linear Dependence of the Stress Vector on the Surface Normal 3.3.2 Cauchy's Laws of Motion 3.4 The nominal stress tensor 3.4.1 Definition of Nominal Stress 3.4.2 The Lagrangean Field Equations 3.5 Conjugate stress analysis 3.5.1 Work Rate and Energy Balance 3.5.2 Conjugage Stress Tensors 3.5.3 Stress Rates References Chapter 4 Elasticity 4.1 Constitutive laws for simple materials 4.1.1 General Remarks on Constitutive Laws 4.1.2 Simple Materials 4.1.3 Material Uniformity and Homogeneity 4.2 Cauchy elastic materials 4.2.1 The Constitutive Equation for a Cauchy Elastic Material 4.2.2 Alternative Forms of the Constitutive Equation 4.2.3 Material Symmetry 4.2.4 Undistorted Configurations and Isotropy 4.2.5 Anisotropic Elastic Solids 4.2.6 Isotropic Elastic Solids 4.2.7 Internal Constraints 4.2.8 Differentiation of a Scalar Function of a Tensor 4.3 Green elastic materials 4.3.1 The Strain-Energy Function 4.3.2 Symmetry Groups for Hyperelastic Materials 4.3.3 Stress-Deformation Relations for Constrained Hyperelastic Materials 4.3.4 Stress-Deformation Relations for Isotropic Elastic Materials 4.3.5 Strain-Energy Functions for Isotropic Elastic Materials 4.4 Application to simple homogeneous deformations References Chapter 5 Boundary-Value Problems 5.1 Formulation of boundary-value problems 5.1.1 Equations of Motion and Equilibrium 5.1.2 Boundary Conditions 5.1.3 Restrictions on the Deformation 5.2 Problems for unconstrained materials 5.2.1 Ericksen's Theorem 5.2.2 Spherically Symmetric Deformation of a Spherical Shell 5.2.3 Extension and Inflation of a Circular Cylindrical Tube 5.2.4 Bending of a Rectangular Block into a Sector of a Circular Tube 5.2.5 Combined Extension and Torsion of a Solid Circular Cylinder 5.2.6 Plane Strain Problems: Complex Variable Methods 5.2.7 Growth Conditions 5.3 Problems for materials with internal constrainsts 5.3.1 Preliminaries 5.3.2 Spherically Symmetric Deformation of a Spherical Shell 5.3.3 Combined Extension and Inflation of a Circular Cylindrical Tube 5.3.4 Flexure of a Rectangular Block 5.3.5 Extension and Torsion of a Circular Cylinder 5.3.6 Shear of a Circular Cylindrical Tube 5.3.7 Rotation of a Solid Circular Cylinder about its Axis 5.4 Variational principles and conservation laws 5.4.1 Virtual Work and Related Principles 5.4.2 The Principle of Stationary Potential Energy 5.4.3 Complementary and Mixed Variational Principles 5.4.4 Variational Principles with Constraints 5.4.5 Conservation Laws and the Energy Momentum Tensor References Chapter 6 Incremental Elastic Deformations 6.1 Incremental constitutive relations 6.1.1 Deformation Increments 6.1.2 Stress Increments and Elastic Moduli 6.1.3 Instantaneous Moduli 6.1.4 Elastic Moduli for Isotropic Materials 6.1.5 Elastic Moduli for Incompressible Isotropic Materials 6.1.6 Linear and Second-order Elasticity 6.2 Structure and properties of the incremental equations 6.2.1 Incremental Boundary-Value Problems 6.2.2 Uniqueness: Global Considerations 6.2.3 Incremental Uniqueness and Stability 6.2.4 Variational Aspects of Incremental Problems 6.2.5 Bifurcation Analysis: Dead-load Tractions 6.2.6 Bifurcation Analysis: Non-adjoint and Self-adjoint Data 6.2.7 The Strong Ellipticity Condition 6.2.8 Constitutive Branching and Constitutive Inequalities 6.3 Solution of incremental boundary-value problems 6.3.1 Bifurcation of a Pre-strained Rectangular Block 6.3.2 Global Aspects of the Plane-strain Bifurcation of a Rectangular Block 6.3.3 Other Problems with Underlying Homogenous Deformation 6.3.4 Bifurcation of a Pressurized Spherical Shell 6.4 Waves and vibrations References Chapter 7 Elastic Properties of Sold Materials 7.1 Phenomenological theory 7.2 Isotropic materials 7.2.1 Homogenous Pure Strain of an Incompressible Material 7.2.2 Application to Rubberlike Materials 7.2.3 Homogeneous Pure Strain of a Compressible Material 7.3 The effect of small changes in material properties 7.4 Nearly incompressible materials 7.4.1 Compressible Materials and the Incompressible Limit 7.4.2 Nearly Incompressible Materials 7.4.3 Pure Homogeneous Strain of a Nearly Incompressible Isotropic Material 7.4.4 Application to Rubberlike Materials References Appendix I Convex Functions References Appendix 2 Glossary of symbols

Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Non-Linear Elastic Deformations (Dover Civil and Mechanical Engineering) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top