Warehouse Stock Clearance Sale

Grab a bargain today!


Superlattice to Nanoelectronics
By

Rating

Product Description
Product Details

Promotional Information

Discusses how technology and new fundamental ideas are introduced and developed in the field of nanoelectronics

Table of Contents

1. Superlattice 2. Resonant tunneling via man-made quantum well states 3. Optical properties and raman scattering in man-made quantum systems 4. Dielectric function and doping of a superlattice 5. Quantum step and activation energy 6. Semiconductor atomic superlattice (sas) 7. Si quantum dots 8. Capacitance, dielectric constant and doping quantum dots 9. Porous silicon 10. Some novel devices 11. Quantum impedance of electrons 12. Why super and why nano

About the Author

Dr. R. Tsu started his professional career at the Bell Telephone Laboratories, Murray Hill, NJ, 1961, working on the theory and experiments related to electron-phonon interaction in piezoelectric solids. He became a close collaborator of Leo Esaki (Nobel Laureate in 1973) at IBM T.J. Watson Research Center where he joined in 1966, working on theory and experiments of optical- and transport-properties, band structures, in solids, and material characterization. A man-made semiconductor superlattice and modulation doping were conceived jointly with Esaki, in 1969, which led to a rapid development of man-made quantum materials and quantum structures eventually evolved into the present day quantum dots. His original formulation of tunneling through multiple man-made heterojunctions is widely accepted in nearly all aspects of resonant tunneling devices reaching Tera-Hertz, thus far being the fastest device to date. The theory and experiments of man-made superlattices and resonant tunneling through a quantum well led to his outstanding contribution award from IBM Research in 1975 and later in 1985, to sharing the International New Materials Prize of the American Physical Society with Esaki and Chang. In 1979, he became the head of Materials Research at Energy Conversion Devices, Inc., in charge of the study on the formation and structure of amorphous silicon. His major contributions involve the determination of bond angle distribution from Raman scattering and optical absorption measurements and experimental determination of conductivity percolation. In 1985, he became the head of the amorphous silicon research group at the Solar Energy Research Institute (now NREL) as a principal scientist, working on amorphous Si/Ge and Si/C alloys, showing that the famous Tauc's plot may be theoretically derived without adjustable parameters. In 1975, as the recipient of the Alexander von Humboldt award, he took a year sabbatical at Max Planck Institute for Solid State Physics in

Reviews

"Tsu follows the development of superlattices and quantum wells from their inception in 1969. He expects readers to have working knowledge in basic mathematics such as complex variables and partial differential equations; some skill in computer programming; and intermediate to advance courses in electromagnetics, quantum mechanics, and solid-state and semiconductor physics. Starting with superlattices, he progresses through resonant tunneling with artificial quantum well states; optical properties and Raman scattering in artificial quantum systems; dielectric function and doping of a superlattice; quantum step and activation energy; semiconductor atomic superlattices; silicon quantum dots; capacitance, dielectric constant, and doping quantum dots; porous silicon; some novel devices; the quantum impedance of a electrons; and why super and why nano."--Reference and Research Book News "This book is an update of a volume by the same name first published in 2005. It does form one of the most definitive descriptions of the physics underlying these new materials. It is also more than that, because it gives readers a lot of fresh insight to the behaviour of electrons in crystalline solids. Much of this book is ideal for assisting lecturers and tutors in putting across some of the more difficult concepts to advanced students. Overall some of the new additions make fascinating reading because Tsu relates to the reader in a very personal style.."--Contemporary Physics

Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Superlattice to Nanoelectronics on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!

Back to top