Warehouse Stock Clearance Sale

Grab a bargain today!


Aircraft Design
By

Rating

Product Description
Product Details

Table of Contents

Preface xv

Series Preface xix

Acknowledgments xxi

Symbols and Acronyms xxiii

1 Aircraft Design Fundamentals 1

1.1 Introduction to Design 1

1.2 Engineering Design 4

1.3 Design Project Planning 8

1.4 Decision Making 10

1.5 Feasibility Analysis 12

1.6 Tort of Negligence 15

References 17

2 Systems Engineering Approach 19

2.1 Introduction 19

2.2 Fundamentals of Systems Engineering 20

2.3 Conceptual System Design 23

2.3.1 Definition 23

2.3.2 Conceptual Design Flowchart 24

2.3.3 Technical Performance Measures 25

2.3.4 Functional Analysis 26

2.3.5 System Trade-Off Analysis 27

2.3.6 Conceptual Design Review 28

2.4 Preliminary System Design 29

2.5 Detail System Design 30

2.6 Design Requirements 33

2.7 Design Review, Evaluation, and Feedback 34

2.8 Systems Engineering Approach in Aircraft Design 37

2.8.1 Implementation of Systems Engineering 37

2.8.2 Design Phases 38

2.8.3 Design Flowchart 39

2.8.4 Design Groups 41

2.8.5 Design Steps 43

References 47

3 Aircraft Conceptual Design 49

3.1 Introduction 49

3.2 Primary Functions of Aircraft Components 50

3.3 Aircraft Configuration Alternatives 52

3.3.1 Wing Configuration 53

3.3.2 Tail Configuration 55

3.3.3 Propulsion System Configuration 55

3.3.4 Landing Gear Configuration 56

3.3.5 Fuselage Configuration 58

3.3.6 Manufacturing-Related Items Configuration 58

3.3.7 Subsystems Configuration 59

3.4 Aircraft Classification and Design Constraints 62

3.5 Configuration Selection Process and Trade-Off Analysis 68

3.6 Conceptual Design Optimization 74

3.6.1 Mathematical Tools 74

3.6.2 Methodology 76

Problems 86

References 92

4 Preliminary Design 93

4.1 Introduction 93

4.2 Maximum Take-Off Weight Estimation 94

4.2.1 The General Technique 94

4.2.2 Weight Build-up 95

4.2.3 Payload Weight 96

4.2.4 Crew Weight 97

4.2.5 Fuel Weight 100

4.2.6 Empty Weight 108

4.2.7 Practical Steps of the Technique 112

4.3 Wing Area and Engine Sizing 113

4.3.1 Summary of the Technique 113

4.3.2 Stall Speed 118

4.3.3 Maximum Speed 120

4.3.4 Take-Off Run 131

4.3.5 Rate of Climb 136

4.3.6 Ceiling 140

4.4 Design Examples 145

Problems 155

References 158

5 Wing Design 161

5.1 Introduction 161

5.2 Number of Wings 164

5.3 Wing Vertical Location 165

5.3.1 High Wing 165

5.3.2 Low Wing 168

5.3.3 Mid-Wing 169

5.3.4 Parasol Wing 169

5.3.5 The Selection Process 169

5.4 Airfoil Section 170

5.4.1 Airfoil Design or Airfoil Selection 171

5.4.2 General Features of an Airfoil 173

5.4.3 Characteristic Graphs of an Airfoil 176

5.4.4 Airfoil Selection Criteria 182

5.4.5 NACA Airfoils 183

5.4.6 Practical Steps for Wing Airfoil Section Selection 188

5.5 Wing Incidence 195

5.6 Aspect Ratio 198

5.7 Taper Ratio 203

5.8 The Significance of Lift and Load Distributions 206

5.9 Sweep Angle 209

5.10 Twist Angle 223

5.11 Dihedral Angle 226

5.12 High-Lift Device 230

5.12.1 The Functions of a High-Lift Device 230

5.12.2 High-Lift Device Classification 232

5.12.3 Design Technique 235

5.13 Aileron 241

5.14 Lifting-Line Theory 242

5.15 Accessories 246

5.15.1 Strake 247

5.15.2 Fence 247

5.15.3 Vortex Generator 248

5.15.4 Winglet 248

5.16 Wing Design Steps 249

5.17 Wing Design Example 250

Problems 259

References 264

6 Tail Design 265

6.1 Introduction 265

6.2 Aircraft Trim Requirements 268

6.2.1 Longitudinal Trim 270

6.2.2 Directional and Lateral Trim 276

6.3 A Review on Stability and Control 278

6.3.1 Stability 278

6.3.2 Control 282

6.3.3 Handling Qualities 284

6.4 Tail Configuration 285

6.4.1 Basic Tail Configuration 285

6.4.2 Aft Tail Configuration 288

6.5 Canard or Aft Tail 294

6.6 Optimum Tail Arm 298

6.7 Horizontal Tail Parameters 301

6.7.1 Horizontal Tail Design Fundamental Governing Equation 301

6.7.2 Fixed, All-Moving, or Adjustable 304

6.7.3 Airfoil Section 306

6.7.4 Tail Incidence 308

6.7.5 Aspect Ratio 311

6.7.6 Taper Ratio 312

6.7.7 Sweep Angle 313

6.7.8 Dihedral Angle 313

6.7.9 Tail Vertical Location 314

6.7.10 Other Tail Geometries 315

6.7.11 Control Provision 316

6.7.12 Final Check 316

6.8 Vertical Tail Design 317

6.8.1 Vertical Tail Design Requirements 317

6.8.2 Vertical Tail Parameters 319

6.9 Practical Design Steps 329

6.10 Tail Design Example 331

Problems 336

References 340

7 Fuselage Design 341

7.1 Introduction 341

7.2 Functional Analysis and Design Flowchart 341

7.3 Fuselage Configuration Design and Internal Arrangement 345

7.4 Ergonomics 346

7.4.1 Definitions 346

7.4.2 Human Dimensions and Limits 348

7.5 Cockpit Design 350

7.5.1 Number of Pilots and Crew Members 351

7.5.2 Pilot/Crew Mission 353

7.5.3 Pilot/Crew Comfort/Hardship Level 353

7.5.4 Pilot Personal Equipment 354

7.5.5 Control Equipment 355

7.5.6 Measurement Equipment 356

7.5.7 Level of Automation 357

7.5.8 External Constraints 359

7.5.9 Cockpit Integration 359

7.6 Passenger Cabin Design 360

7.7 Cargo Section Design 368

7.8 Optimum Length-to-Diameter Ratio 372

7.8.1 Optimum Slenderness Ratio for Lowest f LD 372

7.8.2 Optimum Slenderness Ratio for Lowest Fuselage Wetted Area 378

7.8.3 Optimum Slenderness Ratio for the Lightest Fuselage 380

7.9 Other Fuselage Internal Segments 380

7.9.1 Fuel Tanks 381

7.9.2 Radar Dish 385

7.9.3 Wing Box 386

7.9.4 Power Transmission Systems 387

7.10 Lofting 388

7.10.1 Aerodynamics Considerations 388

7.10.2 Area Ruling 390

7.10.3 Radar Detectability 392

7.10.4 Fuselage Rear Section 392

7.11 Fuselage Design Steps 394

7.12 Design Example 395

Problems 406

References 410

8 Propulsion System Design 413

8.1 Introduction 413

8.2 Functional Analysis and Design Requirements 414

8.3 Engine Type Selection 416

8.3.1 Aircraft Engine Classification 417

8.3.2 Selection of Engine Type 428

8.4 Number of Engines 436

8.4.1 Flight Safety 437

8.4.2 Other Influential Parameters 438

8.5 Engine Location 439

8.5.1 Design Requirements 439

8.5.2 General Guidelines 441

8.5.3 Podded versus Buried 443

8.5.4 Pusher versus Tractor 444

8.5.5 Twin-Jet Engine: Under-Wing versus Rear Fuselage 446

8.6 Engine Installation 448

8.6.1 Prop-Driven Engine 450

8.6.2 Jet Engine 452

8.7 Propeller Sizing 456

8.8 Engine Performance 461

8.8.1 Prop-Driven Engine 461

8.8.2 Jet Engine 462

8.9 Engine Selection 462

8.10 Propulsion System Design Steps 464

8.11 Design Example 467

Problems 471

References 478

9 Landing Gear Design 479

9.1 Introduction 479

9.2 Functional Analysis and Design Requirements 481

9.3 Landing Gear Configuration 484

9.3.1 Single Main 484

9.3.2 Bicycle 485

9.3.3 Tail-Gear 487

9.3.4 Tricycle 487

9.3.5 Quadricycle 488

9.3.6 Multi-Bogey 489

9.3.7 Releasable Rail 489

9.3.8 Skid 489

9.3.9 Seaplane Landing Device 490

9.3.10 Human Leg 491

9.3.11 Landing Gear Configuration Selection Process 492

9.3.12 Landing Gear Attachment 493

9.4 Fixed, Retractable, or Separable Landing Gear 494

9.5 Landing Gear Geometry 497

9.5.1 Landing Gear Height 498

9.5.2 Wheel Base 503

9.5.3 Wheel Track 508

9.6 Landing Gear and Aircraft Center of Gravity 516

9.6.1 Tipback and Tipforward Angle Requirements 516

9.6.2 Take-Off Rotation Requirement 518

9.7 Landing Gear Mechanical Subsystems/Parameters 524

9.7.1 Tire Sizing 524

9.7.2 Shock Absorber 525

9.7.3 Strut Sizing 526

9.7.4 Steering Subsystem 527

9.7.5 Landing Gear Retraction System 527

9.8 Landing Gear Design Steps 528

9.9 Landing Gear Design Example 529

Problems 539

References 544

10 Weight of Components 547

10.1 Introduction 547

10.2 Sensitivity of Weight Calculation 549

10.3 Aircraft Major Components 553

10.4 Weight Calculation Technique 556

10.4.1 Wing Weight 559

10.4.2 Horizontal Tail Weight 561

10.4.3 Vertical Tail Weight 561

10.4.4 Fuselage Weight 562

10.4.5 Landing Gear Weight 563

10.4.6 Installed Engine Weight 564

10.4.7 Fuel System Weight 564

10.4.8 Weight of Other Equipment and Subsystems 565

10.5 Chapter Examples 565

Problems 570

References 573

11 Aircraft Weight Distribution 575

11.1 Introduction 575

11.2 Aircraft Center of Gravity Calculation 578

11.3 Center of Gravity Range 585

11.3.1 Fixed or Variable Center of Gravity 585

11.3.2 Center of Gravity Range Definition 586

11.3.3 Ideal Center of Gravity Location 587

11.4 Longitudinal Center of Gravity Location 590

11.5 Technique to Determine the Aircraft Forward and Aft Center of Gravity 598

11.6 Weight Distribution Technique 606

11.6.1 Fundamentals of Weight Distribution 607

11.6.2 Longitudinal Stability Requirements 609

11.6.3 Longitudinal Controllability Requirements 611

11.6.4 Longitudinal Handling Quality Requirements 613

11.7 Aircraft Mass Moment of Inertia 615

11.8 Chapter Example 620

Problems 624

References 630

12 Design of Control Surfaces 631

12.1 Introduction 631

12.2 Configuration Selection of Control Surfaces 637

12.3 Handling Qualities 638

12.3.1 Definitions 640

12.3.2 Longitudinal Handling Qualities 643

12.3.3 Lateral-Directional Handling Qualities 647

12.4 Aileron Design 654

12.4.1 Introduction 654

12.4.2 Principles of Aileron Design 656

12.4.3 Aileron Design Constraints 664

12.4.4 Steps in Aileron Design 669

12.5 Elevator Design 670

12.5.1 Introduction 670

12.5.2 Principles of Elevator Design 672

12.5.3 Take-Off Rotation Requirement 676

12.5.4 Longitudinal Trim Requirement 680

12.5.5 Elevator Design Procedure 683

12.6 Rudder Design 685

12.6.1 Introduction to Rudder Design 685

12.6.2 Fundamentals of Rudder Design 688

12.6.3 Rudder Design Steps 709

12.7 Aerodynamic Balance and Mass Balance 713

12.7.1 Aerodynamic Balance 715

12.7.2 Mass Balance 722

12.8 Chapter Examples 723

12.8.1 Aileron Design Example 723

12.8.2 Elevator Design Example 729

12.8.3 Rudder Design Example 738

Problems 745

References 752

Appendices 755

Appendix A: Standard Atmosphere, SI Units 755

Appendix B: Standard Atmosphere, British Units 756

Index 757

About the Author

Mohammad H. Sadraey
Daniel Webster College, New Hampshire, USA

Reviews

Summing Up: Highly recommended. All academic andtechnical program engineering collections. (Choice, 1 October 2013) "Readers with knowledge of the fundamental concepts ofaerodynamics, propulsion, aero-structure, and flight dynamics willfind this book ideal to progress towards the next stage in theirunderstanding of the topic. Furthermore, the broad variety ofdesign techniques covered ensures that readers have the freedom andflexibility to satisfy the design requirements when approachingreal-world projects." (Expofairs.com, 25 January2013)

Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Aircraft Design: A Systems Engineering Approach (Aerospace Series) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top