Warehouse Stock Clearance Sale

Grab a bargain today!


Modern Quantum Mechanics
By

Rating

Product Description
Product Details

Table of Contents

1. Fundamental Concepts

1.1. The Stern-Gerlach Experiment

1.2. Kets, Bras, and Operators

1.3. Base Kets and Matrix Representations

1.4. Measurements, Observaables, and the Uncertainty Relations

1.5. Change of Basis

1.6. Position, Momentum, and Translation

1.7. Wave Functions in Position and Momentum Space

2. Quantum Dynamics

2.1. Time Evolution and the SchröDinger Equation

2.2. The SchröDinger Versus the Heisenberg Picture

2.3. Simple Harmonic Oscillator

2.4. SchröDinger's Wave Equation

2.5. Elementary Solutions to SchröDinger's Wave Equation

2.6. Propogators and Feynman Path Integrals

2.7. Potentials and Gauge Transformations

3. Theory of Angular Momentum

3.1. Rotations and Angular Momentum Commutation Relations

3.2. Spin 1

3.3. SO(e), SU(2), and Euler Rotations

3.4. Density Operators and Pure Versus Mixed Ensembles

3.5 Eigenvalues and Eigenstates of Angular Momentum

3.6. Orbital Angular Momentum

3.7. SchröDinger's Equation for Central Potentials

3.8 Addition of Angular Momenta

3.9. Schwinger’s Oscillator Model of Angular Momentum

3.10. Spin Correlation Measurements and Bell’s Inequality

3.11. Tensor Operators

4. Symmetry in Quantum Mechanics

4.1. Symmetries, Conservation Laws, and Degeneracies

4.2. Discrete Symmetries, Parity, or Space Inversion

4.3. Lattice Translation as a Discrete Symmetry

4.4. The Time-Reversal Discrete Symmetry

5. Approximation Methods

5.1. Time-Independent Perturbation Theory: Nondegenerate Case

5.2. Time-Independent Perturbation Theory: The Degenerate Case

5.3. Hydrogenlike Atoms: Fine Structure and the Zeeman Effect

5.4. Variational Methods

5.5. Time-Depedent Potentials: The Interaction Picture

5.6. Hamiltonians with Extreme Time Dependence

5.7. Time-Dependent Perturbation Theory

5.8. Applications to Interactions with the Classical Radiation Field

5.9 Energy Shift and Decay Width

6. Scattering Theory

6.1. Scattering as a Time-Dependent Perturbation

6.2 The Scattering Amplitude

6.3. The Born Approximation

6.4. Phase Shifts and Partial Waves

6.5. Eikonal Approximation

6.6. Low-Energy Scattering and Bound States

6.7. Resonance Scattering

6.8. Symmetry Considerations in Scattering

6.9 Inelastic Electron-Atom Scattering

7. Identical Particles

7.1. Permutation Symmetry

7.2. Symmetrization Postulate

7.3. Two-Electron System

7.4. The Helium Atom

7.5. Multi-Particle States

7.6. Quantization of the Electromagnetic Field

Appendices

A. Electromagnetic Units

A.1. Coulomb’s Law, Charge, and Current

A.2. Converting Between Systems

B. Brief Summary of Elementary Solutions to ShröDinger's Wave Eqation

B.1. Free Particles (V=0)

B.2. Piecewise Constatn Potentials in One Dimension

B.3. Transmission–Reflection Problems

B.4. Simple Harmonic Oscillator

B.5. The Central Force Problem (Spherically Symmetrical Potential V=V(r)]

B.6. Hydrogen Atom

Ask a Question About this Product More...
 
Look for similar items by category
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Modern Quantum Mechanics: Pearson New International Edition on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!

Back to top