Warehouse Stock Clearance Sale

Grab a bargain today!


Micro- and Nanoscale Fluid Mechanics
By

Rating

Product Description
Product Details

Table of Contents

1. Kinematics, conservation equations, and boundary conditions for incompressible flow; 2. Unidirectional flow; 3. Hydraulic circuit analysis; 4. Passive scalar transport: dispersion, patterning, and mixing; 5. Electrostatics and electrodynamics; 6. Electroosmosis; 7. Potential fluid flow; 8. Stikes flow; 9. The diffuse structure of the electrical double layer; 10. Zeta potential in microchannels; 11. Species and charge transport; 12. Microchip chemical separations; 13. Particle electrophoresis; 14. DNA transport and analysis; 15. Nanofluidics: fluid and current flow in molecular-scale and thick-double-layer systems; 16. AC electrokinetics and the dynamics of diffuse charge; 17. Particle and droplet actuation: dielectrophoresis, magnetophoresis, and digital microfluidics; Appendices: A. Units and fundamental constants; B. Properties of electrolyte solutions; C. Coordinate systems and vector calculus; D. Governing equation reference; E. Nondimensionalization and characteristic parameters; F. Multipolar solutions to the Laplace and Stokes equations; G. Complex functions; H. Interaction potentials: atomistic modeling of solvents and solutes.

Promotional Information

For graduates, undergraduates and a reference for practising researchers, this covers the physics of fluid transport in micro- and nanofabricated systems.

About the Author

Brian J. Kirby currently directs the Micro/Nanofluidics Laboratory in the Sibley School of Mechanical and Aerospace Engineering at Cornell University. He joined the school in August 2004. Previous to that, he was a Senior Member of the Technical Staff in the Microfluidics Department at Sandia National Laboratories in Livermore, California, where he worked from 2001 to 2004 on microfluidic systems, with applications primarily to counterbioterrorism. Professor Kirby received a 2002 R&D Top 100 Invention Award for work on microvalves for high-pressure fluid control, a 2004 JD Watson Investigator Award for microdevices for protein production and analysis, and a 2006 Presidential Early Career Award for Scientists and Engineers (PECASE) for nanoscale electrokinetics and bioagent detection. He teaches both macroscale and microscale fluid mechanics, and received the 2008 Mr and Mrs Robert F. Tucker Excellence in Teaching Award at Cornell University.

Ask a Question About this Product More...
 
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top