Warehouse Stock Clearance Sale

Grab a bargain today!


Lectures on Electrochemical Corrosion
By

Rating

Product Description
Product Details

Promotional Information

Springer Book Archives

Table of Contents

1. Introduction to Corrosion.- 1.1. Economic and Technical Significance.- 1.2. Complexity of Corrosion Phenomena.- 1.2.1. Iron in the Presence of Different Aqueous Solutions.- 1.2.2. Iron Filings in a Solution of NaOH.- 1.2.3. Iron in Nitric Acid Solutions.- 1.2.4. Iron as an Anode or Cathode in an Electrolytic Cell.- 1.2.5. Iron in Contact with Different Metals.- 1.2.6. Zinc in Contact with Distilled Water.- 1.3. Influence of Oxidants, Electric Currents, Motion of Solutions.- 1.3.1. Oxidants.- 1.3.2. Influence of Electric Current.- 1.3.3. Influence of Motion of Solution.- 1.4. Application of Chemical Thermodynamics.- 1.5. Application of Electrochemical Thermodynamics.- 2. Chemical and Electrochemical Reactions.- 3. Chemical Equilibria.- 3.1. General Formula of Chemical Equilibria.- 3.2. Influence of pH on Chemical Equilibria. Graphic Representation.- 3.2.1. Influence of pH on the Equilibrium of Homogeneous Systems.- 3.2.1.1. Dissociation of Solutions Weak Acids or Weak Bases.- 3.2.1.2. Applications.- 3.2.1.2.1. The Use of pH Indicators.- 3.2.1.2.2. Buffering Effect.- 3.2.1.2.3. Hydrolysis.- 3.2.1.2.4. pH of Solutions of Weak Acids or Weak Bases.- 3.2.1.2.4.1. General Remarks.- 3.2.1.2.4.2. Graphic Determination of the Influence of pH on the Concentration of Substances Able to Exist in Several Dissolved Forms.- 3.2.1.2.4.3. Examples.- 3.2.2. Influence of pH on the Equilibrium of Heterogeneous Solid-Solution Systems.- 3.2.2.1. Solubility of Oxides and Hydroxides.- 3.2.2.2. pH of Oxide and Hydroxide Solutions.- 3.2.2.3. pH of Solutions of Metallic Salts.- 3.2.2.4. Solubility of Salts of Weak Acids.- 3.2.2.5. Application: Saturation Equilibria of Calcium Carbonate and the Treatment of Aggressive Water.- 3.2.3. Influence of pH on the Equilibria of Heterogeneous Gas-Solution Systems.- 3.2.3.1. Solubility of Acid and Alkaline Gases.- 3.2.3.2. Applications.- 3.2.3.2.1. Action of Strong Acids on Solutions of Carbonates, Sulfites, and Sulfides.- 3.2.3.2.2. Action of Strong Bases on Ammoniacal Solutions.- 3.2.3.2.3. Absorption of Acidic or Alkaline Gases.- 4. Electrochemical Equilibria.- 4.1. Electrochemical Oxidations and Reductions.- 4.1.1. Decomposition of Water.- 4.1.2. Synthesis of Water.- 4.1.3. Corrosion of Iron or Zinc by an Acid with Evolution of Hydrogen.- 4.1.4. Oxidation of Ferrous Salts by Permanganate.- 4.2. Galvanic Cells.- 4.2.1. General Remarks.- 4.2.2. Equilibrium Potential and Electromotive Force of a Galvanic Cell.- 4.2.3. Fuel Cells, Batteries, Electrolysis Cells.- 4.3. Any Electrochemical Reaction.- 4.3.1. Equilibrium Potential of an Electrochemical Reaction.- 4.3.2. General Formula of Electrochemical Equilibria.- 4.3.3. Influence of Electrode Potential on Electrochemical Equilibria.- 4.3.3.1. Influence of the Potential on the Equilibrium of Homogeneous Systems—“Oxidation-Reduction Potentials”.- 4.3.3.2. Influence of the Potential on the Equilibrium of Heterogeneous Solid-Solution Systems—“Dissolution Potentials” of Solid Bodies.- 4.3.3.3. Influence of the Potential on the Equilibrium of Heterogeneous Gas-Solution Systems—“Dissolution Potentials” of Gaseous Bodies.- 4.3.4. Graphic Representations of Electrochemical Equilibria.- 4.3.5. Combined Influence of pH and Electrode Potential on Electrochemical Equilibria. Basis for Diagrams of Electrochemical Equilibria.- 4.3.5.1. Chemical Reactions in Which H+ Ions Participate.- 4.3.5.2. Electrochemical Reactions in Which H+ Ions Do Not Participate.- 4.3.5.3. Electrochemical Reactions in Which H+ Ions Participate.- 4.4. Diagram of Electrochemical Equilibria of Water.- 4.4.1. Thermodynamic Stability of Water: Acid and Alkaline Media; Oxidizing and Reducing Media.- 4.4.2. Decomposition of Water: Formation of Hydrogen, Oxygen, Ozone, and Hydrogen Peroxide.- 4.5. Diagram of Electrochemical Equilibria of Hydrogen Peroxide. Oxidation, Reduction, and Decomposition of Hydrogen Peroxide. Reduction of Oxygen.- 4.6. Diagrams of Electrochemical Equilibria of Metals and Metalloids.- 4.6.1. Diagram of Electrochemical Equilibria of Copper.- 4.6.1.1. Establishment of the Diagram.- 4.6.1.1.1. Standard Free Enthalpies of Formation.- 4.6.1.1.2. Reactions.- 4.6.1.1.3. Conditions of Equilibrium and Graph of Equilibrium Diagram.- 4.6.1.1.3.1. Homogeneous Reactions. Regions of Relative Predominance of Dissolved Bodies.- 4.6.1.1.3.2. Heterogeneous Reactions in Which Two Solid Bodies Participate. Regions of Stability of Solid Bodies.- 4.6.1.1.3.3. Heterogeneous Reactions in Which One Solid Body Participates. Solubility of Solid Bodies.- 4.6.1.1.3.4. Graph of the Overall Diagram.- 4.6.1.1.3.5. Phase Rule.- 4.6.1.2. Interpretation of Diagram. Behavior of Copper in the Presence of Aqueous Solutions.- 4.6.1.2.1. General Bases for Predicting Corrosion, Immunity, and Passivation of Copper.- 4.6.1.2.2. Behavior of Copper in the Presence of an Oxygen-Free Solution of Cupric Sulfate.- 4.6.1.2.3. Influence of pH on the Potential of Copper.- 4.6.1.2.4. Electrolysis of Acidic Copper Solutions.- 4.6.1.2.5. Copper Plating in Cyanide Baths.- 4.6.2. Theoretical Conditions of Corrosion, Immunity, and Passivation.- 4.6.3. Behavior and Equilibrium Diagrams of Copper, Iron, Zinc, Aluminum, Silver, Lead, Tin, Chromium, and Arsenic.- 4.6.3.1. Copper.- 4.6.3.2. Iron.- 4.6.3.3. Zinc.- 4.6.3.4. Aluminum.- 4.6.3.5. Silver.- 4.6.3.6. Lead.- 4.6.3.7. Tin.- 4.6.3.8. Chromium.- 4.6.3.9. Arsenic.- 4.6.4. Nobility of Metals and Metalloids. Theoretical and Practical Bases.- 4.6.4.1. Thermodynamic Basis—Nobility by Immunity; Nobility by Immunity and Passivation.- 4.6.4.2. Actual Conditions of Corrosion and Noncorrosion of Metals.- 4.6.4.2.1. Thermodynamic Nobility and Practical Nobility.- 4.6.4.2.2. Anodic Protection and Cathodic Protection.- 4.6.5. Resistance of Metals to Pure Water.- 4.6.6. Metals Which Can Be Passivated and Activated.- 4.6.7. Oxidizing Corrosion Inhibitors.- 4.6.8. Reference Electrodes.- 4.6.8.1. Introduction.- 4.6.8.2. Calculations Without Activity Coefficients.- 4.6.8.2.1. Standard Hydrogen Electrode.- 4.6.8.2.2. Calomel Electrodes.- 4.6.8.2.3. Silver Chloride Electrodes.- 4.6.8.2.4. Copper Sulfate Electrode.- 4.6.8.3. Calculations Using Activity Coefficients.- 4.6.8.4. Comparison Between Calculated and Measured Electrode Potentials of Reference Electrodes.- 5. Electrochemical Kinetics.- 5.1. General Remarks.- 5.2. Direction of Electrochemical Reactions.- 5.3. Affinity, Overpotential, Rate, and Direction of Electrochemical Reactions. The Second Principle of Electrochemical Thermodynamics.- 5.4. Reaction Currents.- 5.5. Polarization Curves.- 5.5.1. Reversible and Irreversible Reactions: Oxidation Potential, Reduction Potential, and Oxidation—Reduction Potential.- 5.5.2. The Tafel Law. Exchange Current.- 5.5.3. Predetermination of the Direction and Rate of Electro chemical Reactions.- 5.6. Electrochemical Catalysis of Chemical Reactions.- 6. Corrosion and Protection of Iron and Steel.- 6.1. Diagram of Electrochemical Equilibria of the Iron-Water System at 25°C.- 6.2. General Conditions of Corrosion, Immunity, and Passivation of Iron.- 6.3. Polarization Curves.- 6.3.1. Behavior of Iron in the Presence of Oxygen-Free Bicarbonate Solution.- 6.3.2. Behavior of Iron in the Presence of Oxygen-Saturated Bicarbonate Solution.- 6.3.3. Demonstration Experiment: Anodic Corrosion and Passivation of Iron.- 6.3.4. Influence of pH and Electrode Potential on the Behavior of Iron.- 6.4. Behavior of Electrically Insulated Iron.- 6.4.1. Behavior of Iron in the Absence of an Oxidant.- 6.4.2. Behavior of Iron in the Presence of an Oxidant.- 6.4.3. Differential Aeration.- 6.4.3.1. Corrosion Pits.- 6.4.3.2. Waterline Corrosion.- 6.5. Behavior of Iron Coupled to Another Metal.- 6.5.1. Coupling of Iron with a More Noble Metal.- 6.5.1.1. More Noble Metal Not Corroded by the Solution.- 6.5.1.2. More Noble Metal Corroded by the Solution.- 6.5.2. Coupling of Iron with a Less Noble Metal: Cathodic Protection.- 6.6. Protection of Iron and Steel Against Corrosion.- 6.6.1. General Criteria.- 6.6.1.1. Cathodic Protection.- 6.6.1.2. Protection by Passivation; Oxidizing Inhibitors.- 6.6.1.3. Protection by Adsorption Inhibitors.- 6.6.1.4. Other Protection Procedures.- 6.6.2. Electrochemical Techniques for the Study of Corrosion.- 6.6.2.1. Intensiostatic, Potentiostatic, and Potentiokinetic Methods.- 6.6.2.2. General Principles.- 6.6.2.3. Experimental Predetermination of Circumstances of Immunity, General Corrosion, and Localized Corrosion (Pitting).- 6.6.2.4. Linear Polarization Methods.- 6.6.3. Influence of Oxidants, Chlorides, and Orthophosphates.- 6.6.3.1. Influence of Oxygen.- 6.6.3.2. Influence of Chlorides.- 6.6.3.3. Influence of Orthophosphates. Oxidizing Phosphatization.- 6.6.4. Treatment of Corrosive Water.- 6.6.4.1. Drinking Water.- 6.6.4.2. Boiler Water.- 6.6.4.3. Other Industrial Waters.- 6.6.5. Action of Wet Materials.- 6.6.6. Cathodic Protection.- 6.6.6.1. General Principles.- 6.6.6.1.1. Protection by Placing the Metal in a State of Immunity.- 6.6.6.1.2. Protection by Placing the Metal in a State of Perfect Passivation. Protection Against Pitting Corrosion, Crevice Corrosion, and Stress Corrosion Cracking.- 6.6.6.1.2.1. Pitting Corrosion of Copper and Protection.- 6.6.6.1.2.2. Pitting Corrosion, Crevice Corrosion, and Stress Corrosion Cracking of Iron and Steels, and Protection.- 6.6.6.1.3. Protection Procedures Using External Currents and Sacrificial Anodes.- 6.6.6.1.4. Current Requirements for Cathodic Protection.- 6.6.6.2. Applications of Cathodic Protection.- 6.6.6.2.1. Cathodic Protection of Buried Piping.- 6.6.6.2.2. Cathodic Protection of Immersed Structures; Internal Walls of Piping.- 6.6.7. Protection by Corrosion Inhibitors.- 6.6.7.1. General Remarks.- 6.6.7.2. Oxidizing Inhibitors.- 6.6.7.3. Adsorption Inhibitors.- 6.6.7.4. Use of Corrosion Inhibitors.- 6.6.7.4.1. Drinking Water.- 6.6.7.4.2. Central Heating Water.- 6.6.7.4.3. Antifrigerant Solutions.- 6.6.7.4.4. Pickling Baths.- 6.6.7.4.5. Boiler and Packaging Condensates; Volatile Inhibitors.- 6.6.7.4.6. Treatment of Steel Surfaces Before Painting.- 6.6.7.4.6.1. Phosphatization; “Wash Primers”.- 6.6.7.4.6.2. Inhibitive Primer Undercoats.- 6.6.7.4.6.3. Zinc Plating.- 6.6.8. Protection by Coatings.- 6.6.9. Other Corrosion Problems.- 7. Further Applications of Electrochemistry to Corrosion Studies.- 7.1. Introduction.- 7.2. Potential-pH Equilibrium Diagrams for Complex Systems Containing Copper at 25°C.- 7.2.1. System Cu-Cl-H2O.- 7.2.2. System Cu-CO2-H2O.- 7.2.3. System Cu-Cl-CO2-SO3-H2O.- 7.3. Diagrams of Electrochemical Equilibria for Molten Salts.- 7.4. The Influence of Temperature on Electrochemical Equilibria. Electrode Potential—Temperature Diagrams.- General Bibliography.- Author Index.

Ask a Question About this Product More...
 
Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Lectures on Electrochemical Corrosion on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top