Warehouse Stock Clearance Sale

Grab a bargain today!


Degradable Polymers
By

Rating

Product Description
Product Details

Table of Contents

1 Introduction to the abiotic degradation of carbon chain polymers.- Summary.- 1.1 Abiotic polymer degradation: precursor to biodegradation.- 1.2 Environmental oxidation of polymers.- 1.3 Antioxidants and stabilizers.- 1.4 Control of polymer oxidation during processing and use.- References.- 2 An overview of biodegradable polymers and biodegradation of polymers.- Summary.- 2.1 Introduction.- 2.2 Biomedical polymers.- 2.3 Biodegradable polymers in polymer waste management.- 2.4 Conclusion.- References.- 3 Techniques and mechanisms of polymer degradation.- Summary.- 3.1 Introduction.- 3.2 Inert and degradable polymers.- 3.3 Degradation mechanisms.- 3.4 Analyses and characterization.- References.- 4 Biodegradation of aliphatic polyesters.- Summary.- 4.1 Introduction.- 4.2 Biodegradation mechanisms.- 4.3 Biodegradable aliphatic polyesters.- 4.4 Conclusions.- References.- 5 Properties and applications of bacterially derived polyhydroxyalkanoates.- Summary.- 5.1 Introduction.- 5.2 Thermal and mechanical properties of PHBV (3-hydroxybutyrate-co-3-hydroxyvalerate.- 5.3 Physical properties: increasing the sidechain length.- 5.4 Copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB).- 5.5 The crystal structure of PHBV polymers.- 5.6 Thermal stability.- 5.7 Biodegradation.- 5.8 Processing techniques and applications used for the Biopol™ range of polymers.- 5.9 Conclusion.- References.- 6 Starch—polymer composites.- Summary.- 6.1 Introduction.- 6.2 Starch-filled plastics.- 6.3 Thermoplastic starch.- 6.4 Starch-based materials on the market.- 6.5 Conclusions.- References.- 7 The science and engineering of polymer composite degradation.- Summary.- 7.1 Degradation mechanisms.- 7.2 The degradation equation.- 7.3 Definitions.- 7.4 Standards for biodegradable plastics.-7.5 Science of biodegradable blends.- 7.6 Conclusions.- Acknowledgements.- References.- 8 Ethylene-carbon monoxide copolymers.- Summary.- 8.1 Introduction.- 8.2 Polymerization of E/CO.- 8.3 Analyses for CO content.- 8.4 Physical properties.- 8.5 Fabrication.- 8.6 Degradation mechanisms.- 8.7 Effects of degradation.- 8.8 Products of degradation.- 8.9 Early property loss.- 8.10 Effect of temperature on degradation.- 8.11 Litter simulation.- 8.12 Recycle of E/CO copolymer.- 8.13 Mixtures with other polymers.- 8.14 Potential new applications.- 8.15 Future directions.- References.- 9 Photo-biodegradable plastics.- Summary.- 9.1 The need for degradable polymers.- 9.2 Technical requirements of degradable polymers.- 9.3 Agricultural plastics.- 9.4 Packaging plastics.- 9.5 Control of biodegradation by means of antioxidants.- 9.6 Conclusions.- Acknowledgements.- References.- 10 Photodegradable plastics in agriculture.- Summary.- 10.1 The use of plastics in agriculture.- 10.2 The disposal of mulching films after use.- 10.3 Economic aspects of mulching films.- 10.4 Other applications of photodegradable plastics in agriculture.- References.- 11 The role of degradable polymers in agricultural systems.- Summary.- 11.1 Plasticulture.- 11.2 Photodegradable films.- 11.3 Mid-bed trenching.- 11.4 Nitrogenous fertilizer reduction.- 11.5 Acceleration of crop maturation.- 11.6 Potential crop contamination by heavy metals.- References.- 12 Plastics and the environment.- Summary.- 12.1 Introduction.- 12.2 Resource considerations for plastics.- 12.3 Energy and resource analysis.- 12.4 Environmental considerations for packaging materials.- 12.5 Paper versus plastic — an environmental assessment.- 12.6 The role of photodegradable plastics in packaging.- 12.7 Technology of photodegradableplastics.- 12.8 Comparative strategies for litter abatement.- 12.9 Biodegradation studies on photodegraded plastics.- References.- 13 Degradable polymers in waste and litter control.- Summary.- 13.1 The role of plastics in packaging.- 13.2 The biological cycle.- 13.3 The degradation environment.- 13.4 The systems approach to waste management.- 13.5 The compatibility of degradable plastics with other waste management procedures.- 13.6 Conclusions.- References.

Promotional Information

Springer Book Archives

Reviews

`The structure and presentation are excellent. It is a major contribution to the literature on polymer technology and will undoubtedly be widely read.'
Chemistry and Industry
`It will be of interest to polymer scientists in academia and industry, to environmental scientists, R&D scientists working on packaging, hygiene and agricultural applications, and biomedical scientists working on controlled drug release and prosthetics.'
Polymer International

Ask a Question About this Product More...
 
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 8% commission by selling Degradable Polymers: Principles and Applications on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.

Back to top