Warehouse Stock Clearance Sale

Grab a bargain today!


Advances in PID Control
By

Rating

Product Description
Product Details

Table of Contents

1. Introduction.- 1.1 Evolution of the PID Controller.- 1.2 Components of the PID Controller.- 1.2.1 The Proportional part.- 1.2.2 The Integral part.- 1.2.3 The Derivative part.- 1.3 Choice of Controller Type.- 1.3.1 On/Off controller.- 1.3.2 P controller.- 1.3.3 PD controller.- 1.3.4 PI controller.- 1.3.5 PID controller.- 1.4 Nomenclature of the PID Controller.- 1.5 Structures of the PID Controller.- 1.5.1 Parallel type.- 1.5.2 Series type.- 1.5.3 Relationship between Parallel and Series types.- 1.5.4 Incremental type.- 2. Classical Designs.- 2.1 Introduction.- 2.2 Design Objectives - Speed Versus Stability.- 2.3 Trial and Error Method.- 2.4 The Ziegler-Nichols Methods.- 2.4.1 The step response method.- 2.4.2 The frequency response method.- 2.4.3 The modified generalized frequency response method.- 2.5 The Stability Limit Method.- 2.6 The Cohen-Coon Method.- 2.7 The Tyreus-Luyben Method.- 3. Modern Designs.- 3.1 Introduction.- 3.2 Constraints of Classical PID Control.- 3.3 Pole Placement Design.- 3.3.1 PI control of first-order systems.- 3.3.2 PID control of second-order systems.- 3.3.3 General case.- 3.4 Dominant Pole Placement.- 3.5 Gain and Phase Margin Design I: PI Controller.- 3.5.1 The design method.- 3.5.2 Simulation study.- 3.6 Gain and Phase Margin Design II: PID Controller.- 3.6.1 Simulation study.- 3.7 Linear Quadratic Control Design.- 3.7.1 LQR solution for time-delay systems.- 3.7.2 PI tuning for first-order modeling.- 3.7.3 Simulation study.- 3.7.4 Extension to second-order modeling.- 3.7.5 Robustness analysis.- 3.8 Composite PI-Adaptive Control Design.- 3.8.1 Problem formulation.- 3.8.2 PI control based on first-order dominant model.- 3.8.3 Nonlinear adaptive control.- 3.8.4 Passivity of dynamical systems.- 3.8.5 Simulation study.- 4. Automatic Tuning.- 4.1 Introduction.- 4.1.1 Methods based on step response analysis.- 4.1.2 Methods based on frequency response analysis.- 4.2 Step Response Approach.- 4.2.1 Modeling from a step test.- 4.2.2 Simulation study.- 4.3 Relay Feedback Approach.- 4.3.1 Basic idea.- 4.3.2 Improved estimation accuracy.- 4.3.3 Estimation of a general point.- 4.3.4 Estimation of multiple points.- 4.4 On-line Relay Tuning.- 4.4.1 Configuration.- 4.4.2 Structure identification.- 4.4.3 Assessment of Control Performance.- 4.4.4 Controller design.- 4.5 FFT on Relay Transients.- 4.5.1 The FFT-Relay Method.- 4.5.2 Simulation study.- 4.6 Frequency Response - Transfer Function Conversion.- 4.6.1 Single and multiple lag processes.- 4.6.2 Second-order modeling.- 4.7 Continuous Self-Tuning of PID Control.- 4.7.1 Process estimation from load disturbance response.- 4.7.2 PID adaptation.- 5. Multi-loop Control.- 5.1 Introduction.- 5.2 The Modified Ziegler-Nichols Method.- 5.3 Review of the BLT (Biggest Log-Modulus Tuning).- 5.4 Modified Ziegler-Nichols Method for Multi-Loop Processes.- 5.5 Derivation of the Design Equations.- 5.6 Simulation study.- 5.7 Extension to Cross-coupled Controllers.- 6. Practical Issues.- 6.1 Introduction.- 6.2 Non-linearities.- 6.2.1 Transducer characteristics.- 6.2.2 Friction.- 6.2.3 Saturation.- 6.2.4 Hysteresis.- 6.2.5 Dead zone.- 6.2.6 Process characteristics.- 6.2.7 Gain scheduling.- 6.3 Disturbances.- 6.3.1 Set point changes.- 6.3.2 Low frequency drift.- 6.3.3 High frequency noise.- 6.4 Operational Aspects.- 6.4.1 Set point weighting.- 6.4.2 Auto-manual bumpless transfer.- 6.5 Digital PID Implementation.- 6.5.1 Selection of sampling interval.- 6.5.2 Discretization.- A. Industrial Controllers.- A.l ABB COMMANDER 351.- A.2 Elsag Bailey Protonic 500/550.- A.3 Foxboro 718PL/PR.- A.4 Honeywell UDC3300.- References.

Ask a Question About this Product More...
 
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top