Warehouse Stock Clearance Sale

Grab a bargain today!


Digital Image Processing, Global Edition
By

Rating

Product Description
Product Details

Table of Contents

  • 1 Introduction
  • 1.1 What is Digital Image Processing?
  • 1.2 The Origins of Digital Image Processing
  • 1.3 Examples of Fields that Use Digital Image Processing
  • 1.4 Fundamental Steps in Digital Image Processing
  • 1.5 Components of an Image Processing System
  • 2 Digital Image Fundamentals
  • 2.1 Elements of Visual Perception
  • 2.2 Light and the Electromagnetic Spectrum
  • 2.3 Image Sensing and Acquisition
  • 2.4 Image Sampling and Quantization
  • 2.5 Some Basic Relationships Between Pixels
  • 2.6 Introduction to the Basic Mathematical Tools Used in Digital Image Processing
  • 3 Intensity Transformations and Spatial Filtering
  • 3.1 Background
  • 3.2 Some Basic Intensity Transformation Functions
  • 3.3 Histogram Processing
  • 3.4 Fundamentals of Spatial Filtering
  • 3.5 Smoothing (Lowpass) Spatial Filters
  • 3.6 Sharpening (Highpass) Spatial Filters
  • 3.7 Highpass, Bandreject, and Bandpass Filters from Lowpass Filters
  • 3.8 Combining Spatial Enhancement Methods
  • 3.9 Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering
  • 4 Filtering in the Frequency Domain
  • 4.1 Background
  • 4.2 Preliminary Concepts
  • 4.3 Sampling and the Fourier Transform of Sampled Functions
  • 4.4 The Discrete Fourier Transform of One Variable
  • 4.5 Extensions to Functions of Two Variables
  • 4.6 Some Properties of the 2-D DFT and IDFT
  • 4.7 The Basics of Filtering in the Frequency Domain
  • 4.8 Image Smoothing Using Lowpass Frequency Domain Filters
  • 4.9 Image Sharpening Using Highpass Filters
  • 4.10 Selective Filtering
  • 4.11 The Fast Fourier Transform
  • 5 Image Restoration and Reconstruction
  • 5.1 A Model of the Image Degradation/Restoration Process
  • 5.2 Noise Models
  • 5.3 Restoration in the Presence of Noise Only—Spatial Filtering
  • 5.4 Periodic Noise Reduction Using Frequency Domain Filtering
  • 5.5 Linear, Position-Invariant Degradations
  • 5.6 Estimating the Degradation Function
  • 5.7 Inverse Filtering
  • 5.8 Minimum Mean Square Error (Wiener) Filtering
  • 5.9 Constrained Least Squares Filtering
  • 5.10 Geometric Mean Filter
  • 5.11 Image Reconstruction from Projections
  • 6 Wavelet and Other Image Transforms
  • 6.1 Preliminaries
  • 6.2 Matrix-based Transforms
  • 6.3 Correlation
  • 6.4 Basis Functions in the Time-Frequency Plane
  • 6.5 Basis Images
  • 6.6 Fourier-Related Transforms
  • 6.7 Walsh-Hadamard Transforms
  • 6.8 Slant Transform
  • 6.9 Haar Transform
  • 6.10 Wavelet Transforms
  • 7 Color Image Processing
  • 7.1 Color Fundamentals
  • 7.2 Color Models
  • 7.3 Pseudocolor Image Processing
  • 7.4 Basics of Full-Color Image Processing
  • 7.5 Color Transformations
  • 7.6 Color Image Smoothing and Sharpening
  • 7.7 Using Color in Image Segmentation
  • 7.8 Noise in Color Images
  • 7.9 Color Image Compression
  • 8 Image Compression and Watermarking
  • 8.1 Fundamentals
  • 8.2 Huffman Coding
  • 8.3 Golomb Coding
  • 8.4 Arithmetic Coding
  • 8.5 LZW Coding
  • 8.6 Run-length Coding

Ask a Question About this Product More...
 
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top