Now Australia's Biggest Toy Shop

Shop over 1.5 Million Toys in our Huge New Range

Crystal Growth Technology

Product Details

Table of Contents

Foreword. Preface. List of Contributors. Part I. Basic Concepts in Crystal Growth Technology. 1. Thermodynamics Modeling of Crystal-Growth Processes (Eberhard Buhrig, Manfred Jurisch, Jurgen Korb, and Olf Patzold). 1.1 Introduction. 1.2 General Approach of Thermodynamic Modeling. 1.3 Crystal Growth in the System Si-C-O-Ar (Example 1). 1.4 Crystal Growth of Carbon-Doped GaAs (Example 2). 1.5 Summary and Conclusions. 2. Modeling of Vapor-Phase Growth of SiC and AIN Bulk Crystals (Roman A. Talalaev, Alexander S. Segal, Eugene V. Yakovlev, and Andrey N, Vorob ev). 2.1 Introduction. 2.2 Model Description. 2.3 Results and Discussions. 2.4 Conclusions. 3. Advanced Technologies of Crystal Growth from Melt Using Vibrational Influence (Evgeny V. Zharikov). 3.1 Introduction. 3.2 Axial Vibrational Control in Crystal Growth. 3.3 AVC-Assisted Czochralski Method. 3.4 AVC-Assisted Bridgman Method. 3.5 AVC-Assisted Floating Zone Method. 3.6 Conclusions. Part II. Semiconductors. 4. Numerical Analysis of Selected Processes in Directional Solidification of Silicon for Photovoltaics (Koichi Kakimoto). 4.1 Introduction. 4.2 Directional Solidification Method. 4.3 Crystallization Process. 4.4 Impurity Incorporation in Crystals. 4.5 Summary. 5. Characterization and Control of Defects in VCz GaAS Crystals Grown without B2O3 Encapsulant (Frank M. Kiessling). 5.1 Introduction. 5.2 Retrospection. 5.3 Crystal Growth without B2O3 Encapsulant. 5.4 Inclusions, Precipitates and Dislocations. 5.5 Residual Impurities and Special Defect Studies. 5.6 Electrical and Optical Properties SI GaAs. 5.7 Boron in SC GaAs. 5.8 Outlook on TMF-VCz. 5.9 Conclusions. 6. The Growth of Semiconductor Crystals (Ge, GaAs) by the Combined Heather Magnet Technology (Peter Rudolph, Matthias Czupalla, Christiane Frank Rotsch, Frank-Michael Kiessling and Bernd Lux). 6.1 Introduction. 6.2 Selected Fundamentals. 6.3 TMF Generation in Heater-Magnet Modules. 6.4 The HMM Design. 6.5 Numerical Modeling. 6.6 Dummy Measurements. 6.7 Growth Results under TMF. 6.8 Conclusions and Outlook. 7. Manufacturing of Bulk AIN Substrates (Oleg V. Avdeev, Tatinana Yu. Chemekova, Heikki Helava, Yuri N. Makarov, Evgenii N. Mokhov, Sergei S. Nagalyuk, M. G. Ramm, Alexander S. Segal, and Alexander I. Zhmakin). 7.1 Introduction. 7.2 Modeling. 7.3 Experiment. 7.4 Results and Discussion. 7.5 Conclusions. 8. Interactions of Dislocations During Epitaxial Growth of SiC and GaN (Jochen Friedrich, Birgit Kallinger, Patrick Berwian, Elke Meissner). 8.1 Introduction. 8.2 Classification, Nomenclature and Characterization of Dislocations in SiC and GaN. 8.3 Conversion of Basal Plane Dislocations During SiC Epitaxy. 8.4 Reduction of Dislocations During Homoepitaxy of GaN. 8.5 Conclusions. 9. Low-Temperature Growth of Ternary III-V Semiconductor Crystals from Antimonide-Based Quaternary Melts (Partha S. Dutta). 9.1 Introduction. 9.2 Crystal Growth from Quaternary Melts. 9.3 Advantages of Quaternary Melts. 9.4 Synthesis and Bulk Crystal Growth. 9.5 Conclusion. 10. Mercury Cadmium Telluride (MCT) Growth Using ACRT and LPE (Peter Capper). 10.1 Introduction. 10.2 Bridgman/ACRT Growth of MCT. 10.3 Liquid Phase Epitaxy of MCT. 11. The Use of a Platinum Tube as an Ampoule Support in the Bridgman Growth of Bulk CZT Crystals (Narayanasamy Vijayan, Veronica Carcelen, and Ernesto Dieguez). 11.1 Introduction. 11.2 The Importance of the Solid/Liquid Interface. 11.3 Approaches for Crystal Growth Using Ampoule Support. 11.4 Results and Discussions. 11.5 Conclusions. Part III. Dielectrics. 12. Modeling and Optimization of Oxide Crystal Growth (Svetlana E. Demina, Vladimir V. Kalaev, Alexander T. Kuliev, Kirill M. Mazaev, and Alexander I. Zhmakin). 12.1 Introduction. 12.2 Radiative Heat Transfer (RHT). 12.3 Numerical Model. 12.4 Results and Discussion. 12.5 Conclusions. 13. Advanced Material Development for Inertial Fusion Energy (IFE) (Kathleen Schaffers, Andrew J. Bayramian, Joseph A. Menapace, Gregory T. Rogowski, Thomas F. Saules, Christopher A. Stolz, Steve B. Sutton, John B. Tassano, Peter A. Thelin, Christopher A. Ebbers, John A. Caird, Christopher P.J. Barty, Mark A. Randles, Charles Porter, Yiting Fei, and Bruce H. T. Chai). 13.1 Introduction. 13.2 Production of Nd: phosphate Laser Glass and KDP Frenquency-Conversion Crystals. 13.3 Yb: S-FAP Crystals. 13.4 YCOB Crystals. 13.5 Advanced Material Concepts for Power-Plant Designs. 13.6 Summary. 14. Magneto-Optic Garnet Sensor Films: Preparation, Characterization, Application (Peter Goernet, Andreas Lorenz, Morris Lindner, and Hendryk Richert). 14. 1 Introduction. 14.2 Bi-Substituted Garnets. 14.3 LPE Deposition and Topological Film Properties. 14.4 Magnetic and Magneto-Optic Film Properties. 14.5 Applications. 14.6 Conclusions. 15. Growth Technology and Laser Properties of Yb-Doped Sesquioxides (Rigo Peters, Klaus Petermann, and Gunter Huber). 15.1 Introduction. 15.2 Structure and Physical Properties. 15.3 Crystal Growth. 15.4 Spectroscopic Characterization. 15.5 Laser Experiments. 15.6 Summary and Outlook. 16. Continuous Growth of Alkali-Halides: Physics and Technology (Oleg Sidletskiy). 16.1 Modern Requirements to Large Alkali-Halide Crystals. 16.2 Conditions of Steady-State Crystallization in Conventional Melt-Growth Methods and in Their Modifications. 16.3 Macrodefect Formation in AHC. 16.4 Dynamics of Thermal Conditions during Continuous Growth. 16.5 Advanced Growth-Control Algorithms. 16.6 Summary. 17. Trends in Scintillation Crystals (Alexander V. Gektin). 17.1 Introduction. 17.2 Novel Scintillation Materials. 17.3 Scintillation Detectors for Image Visualization and Growth Techniques for Scintillation Crystals. 17.4 High Spatial Resolution Scintillation Detectors. 17.5 Conclusions. Part IV. Crystal Machining. 18. Crystal Machining Using Atmospheric Pressure Plasma (Yasuhisa Sano, Kazuya Yamamura, and Kazuto Yamauchi). 18.1 Introduction. 18.2 Plasma Chemical Vaporization Machining (PCVM). 18.3 Numerically Controlled Sacrificial Oxidation. 18.4 Conclusions. Index.

About the Author

Peter Capper is a Materials Team Leader at SELEX GALILEO Infrared Ltd (formerly BAE Systems), and has over 30 years of experience in the infrared material mercury cadmium telluride (MCT). He holds the patent for the application of the accelerated crucible rotation technique to Bridgman growth and is recognised as a world authority on MCT. He has authored/co-authored over 100 Journal articles and edited/co-edited/co-written 10 books on electronic materials and devices. He has served on several International Advisory boards to conferences, acted as co-Chair at an E-MRS Symposium (France) and a SPIE Symposium (USA) and has edited/co-edited several conference proceedings for J. Crystal Growth and J. Materials Science. He is also currently on the editorial board of the Journal of Materials Science: Materials in Electronics and is a Series Editor on the Wiley Series 'Materials for Electronic and Optoelectronic Appliations?. In 2008 he received an award from the Swiss Crystallographic Society for his bulk growth work. Peter Rudolph is currently the coordinator of the technology department of the Leibniz-Institute for Crystal Growth in Berlin. His present research field is the growth of semiconductor crystals (GaAs, Ge, Si) in magnetic fields. He obtained the PhD in Solid State Physics at the Technical University of Lvov in 1972, and in 1985 the Professor position at the Humboldt University in Berlin. From 1993-94 he was Guest Professor at the Tohoku University in Sendai. He is associate editor of J. Crystal Growth, president of the German Society of Crystal Growth and member of the IOCG executive committee. He is the author of one monograph, more than 200 papers and book chapters, 7 books editions and 33 patent descriptions. He acted as co-chair and advisor of several international conferences and schools. He received innovation prizes in 2001 and 2008.


"Edited by the organizers of the International Workshop on CrystalGrowth Technology, this ready reference is essential reading formaterials scientists, chemists, physicists, computer hardwaremanufacturers, engineers, and those working in the chemical andsemiconductor industries." (, 31 January 2011) "Semiconductors and dielectrics are two essential materialsfound in cell phones and computers, for example, and both aremanufactured by growing crystals." (, 20 January 2011)

Ask a Question About this Product More...
Write your question below:
Look for similar items by category
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 5% commission by selling Crystal Growth Technology: Semiconductors and Dielectrics on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.
Back to top